Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

Overview

SuperGAT

Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision, International Conference on Learning Representations (ICLR), 2021.

Notice

The documented SuperGATConv layer with an example has been merged to the PyTorch Geometric's main branch.

This repository is based on torch==1.4.0+cu100 and torch-geometric==1.4.3, which are somewhat outdated at this point (Feb 2021). If you are using recent PyTorch/CUDA/PyG, we would recommend using the PyG's. If you want to run codes in this repository, please follow #installation.

Installation

# In SuperGAT/
bash install.sh ${CUDA, default is cu100}
  • If you have any trouble installing PyTorch Geometric, please install PyG's dependencies manually.
  • Codes are tested with python 3.7.6 and nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 image.
  • PYG's FAQ might be helpful.

Basics

  • The main train/test code is in SuperGAT/main.py.
  • If you want to see the SuperGAT layer in PyTorch Geometric MessagePassing grammar, refer to SuperGAT/layer.py.
  • If you want to see hyperparameter settings, refer to SuperGAT/args.yaml and SuperGAT/arguments.py.

Run

python3 SuperGAT/main.py \
    --dataset-class Planetoid \
    --dataset-name Cora \
    --custom-key EV13NSO8-ES
 
...

## RESULTS SUMMARY ##
best_test_perf: 0.853 +- 0.003
best_test_perf_at_best_val: 0.851 +- 0.004
best_val_perf: 0.825 +- 0.003
test_perf_at_best_val: 0.849 +- 0.004
## RESULTS DETAILS ##
best_test_perf: [0.851, 0.853, 0.857, 0.852, 0.858, 0.852, 0.847]
best_test_perf_at_best_val: [0.851, 0.849, 0.855, 0.852, 0.858, 0.848, 0.844]
best_val_perf: [0.82, 0.824, 0.83, 0.826, 0.828, 0.824, 0.822]
test_perf_at_best_val: [0.851, 0.844, 0.853, 0.849, 0.857, 0.848, 0.844]
Time for runs (s): 173.85422565042973

The default setting is 7 runs with different random seeds. If you want to change this number, change num_total_runs in the main block of SuperGAT/main.py.

For ogbn-arxiv, use SuperGAT/main_ogb.py.

GPU Setting

There are three arguments for GPU settings (--num-gpus-total, --num-gpus-to-use, --gpu-deny-list). Default values are from the author's machine, so we recommend you modify these values from SuperGAT/args.yaml or by the command line.

  • --num-gpus-total (default 4): The total number of GPUs in your machine.
  • --num-gpus-to-use (default 1): The number of GPUs you want to use.
  • --gpu-deny-list (default: [1, 2, 3]): The ids of GPUs you want to not use.

If you have four GPUs and want to use the first (cuda:0),

python3 SuperGAT/main.py \
    --dataset-class Planetoid \
    --dataset-name Cora \
    --custom-key EV13NSO8-ES \
    --num-gpus-total 4 \
    --gpu-deny-list 1 2 3

Model (--model-name)

Type Model name
GCN GCN
GraphSAGE SAGE
GAT GAT
SuperGATGO GAT
SuperGATDP GAT
SuperGATSD GAT
SuperGATMX GAT

Dataset (--dataset-class, --dataset-name)

Dataset class Dataset name
Planetoid Cora
Planetoid CiteSeer
Planetoid PubMed
PPI PPI
WikiCS WikiCS
WebKB4Univ WebKB4Univ
MyAmazon Photo
MyAmazon Computers
PygNodePropPredDataset ogbn-arxiv
MyCoauthor CS
MyCoauthor Physics
MyCitationFull Cora_ML
MyCitationFull CoraFull
MyCitationFull DBLP
Crocodile Crocodile
Chameleon Chameleon
Flickr Flickr

Custom Key (--custom-key)

Type Custom key (General) Custom key (for PubMed) Custom key (for ogbn-arxiv)
SuperGATGO EV1O8-ES EV1-500-ES -
SuperGATDP EV2O8-ES EV2-500-ES -
SuperGATSD EV3O8-ES EV3-500-ES EV3-ES
SuperGATMX EV13NSO8-ES EV13NSO8-500-ES EV13NS-ES

Other Hyperparameters

See SuperGAT/args.yaml or run $ python3 SuperGAT/main.py --help.

Code Base

Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
A really easy-to-use and powerful sudoku solver.

SodukuSolver This is a really useful sudoku solver with a Qt gui. USAGE Enter the numbers in and click "RUN"! If you don't want to wait, simply press

Ujhhgtg Teams 11 Jun 02, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023