An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Overview

Deep Permutation Equivariant Structure from Motion

Paper | Poster

This repository contains an implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

The paper proposes a neural network architecture that, given a set of point tracks in multiple images of a static scene, recovers both the camera parameters and a (sparse) scene structure by minimizing an unsupervised reprojection loss. The method does not require initialization of camera parameters or 3D point locations and is implemented for two setups: (1) single scene reconstruction and (2) learning from multiple scenes.

Table of Contents


Setup

This repository is implemented with python 3.8, and in order to run bundle adjustment requires linux.

Folders

The repository should contain the following folders:

Equivariant-SFM
├── bundle_adjustment
├── code
├── datasets
│   ├── Euclidean
│   └── Projective
├── environment.yml
├── results

Conda envorinment

Create the environment using one of the following commands:

conda create -n ESFM -c pytorch -c conda-forge -c comet_ml -c plotly  -c fvcore -c iopath -c bottler -c anaconda -c pytorch3d python=3.8 pytorch cudatoolkit=10.2 torchvision pyhocon comet_ml plotly pandas opencv openpyxl xlrd cvxpy fvcore iopath nvidiacub pytorch3d eigen cmake glog gflags suitesparse gxx_linux-64 gcc_linux-64 dask matplotlib
conda activate ESFM

Or:

conda env create -f environment.yml
conda activate ESFM

And follow the bundle adjustment instructions.

Data

Download the data from this link.

The model can work on both calibrated camera setting (euclidean reconstruction) and on uncalibrated cameras (projective reconstruction).

The input for the model is an observed points matrix of size [m,n,2] where the entry [i,j] is a 2D image point that corresponds to camera (image) number i and 3D point (point track) number j.

In practice we use a correspondence matrix representation of size [2*m,n], where the entries [2*i,j] and [2*i+1,j] form the [i,j] image point.

For the calibrated setting, the input must include m calibration matrices of size [3,3].

How to use

Optimization

For a calibrated scene optimization run:

python single_scene_optimization.py --conf Optimization_Euc.conf

For an uncalibrated scene optimization run:

python single_scene_optimization.py --conf Optimization_Proj.conf

The following examples are for the calibrated settings but are clearly the same for the uncalibrated setting.

You can choose which scene to optimize either by changing the config file in the field 'dataset.scan' or from the command line:

python single_scene_optimization.py --conf Optimization_Euc.conf --scan [scan_name]

Similarly, you can override any value of the config file from the command line. For example, to change the number of training epochs and the evaluation frequency use:

python single_scene_optimization.py --conf Optimization_Euc.conf --external_params "train:num_of_epochs:1e+5,train:eval_intervals:100"

Learning

To run the learning setup run:

python multiple_scenes_learning.py --conf Learning_Euc.conf

Or for the uncalibrated setting:

python multiple_scenes_learning.py --conf Learning_Proj.conf

To override some parameters from the config file, you can either change the file itself or use the same command as in the optimization setting:

python multiple_scenes_learning.py --conf Learning_Euc.conf --external_params "train:num_of_epochs:1e+5,train:eval_intervals:100"

Citation

If you find this work useful please cite:

@InProceedings{Moran_2021_ICCV,
    author    = {Moran, Dror and Koslowsky, Hodaya and Kasten, Yoni and Maron, Haggai and Galun, Meirav and Basri, Ronen},
    title     = {Deep Permutation Equivariant Structure From Motion},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {5976-5986}
}
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022