Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

Overview

SegPC-2021

This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by Deepanshu Pandey, Pradyumna Gupta, Sumit Bhattacharya, Aman Sinha, Rohit Agarwal.

About the Challenge

Website link: https://segpc-2021.grand-challenge.org/SegPC-2021/

Overview: In recent years, with the advancement of Deep Learning, there has been tremendous efforts in the application of image processing to build AI based models for cancer diagnosis. This challenge is also one such effort. It deals with the segmentation of plasma cell cancer, namely, Multiple Myeloma (MM), which is a type of blood cancer. We are provided with the stained color normalization imag of the cells.

Image distribution: The cells may have different structures because:

  • There is a varying amount of nucleus and cytoplasm from one cell to another.
  • The cells may appear in clusters or as isolated single cells.
  • The cells appearing in clusters may have three cases -
    • Cytoplasm of two cells touch each other,
    • The cytoplasm of one cell and nucleus of another touch each other,
    • nucleus of cells touch each other. Since the cytoplasm and nucleus have different colors, the segmentation of cells may pose challenges.
  • There may be multiple cells touching each other in the cluster.
  • There may be unstained cells, say a red blood cell underneath the cell of interest, changing its color and shade.
  • The cytoplasm of a cell may be close to the background of the whole image, making it difficult to identify the boundary of the cell and segment it.

Getting Started

We recommend using Python 3.7 for running the scripts in this repository. The necessary packages can be installed using requirements.txt in the respective folders. Since all of our work has been done on Google Colaboratory, the requirements.txt may have more packages/modules than is actually required and it might take quite long to install everything. Hence,for such a case, the folders of both the models also contain an essential-requirements.txt file which contains some essential packages that need to installed beforehand, while the other fundamental packages can be installed later as their need shows up as an error when running the given training and inference scripts.

To clone this repository:

$ git clone https://github.com/dsciitism/SegPC-2021

To run this repository, following the given steps using the sections mentioned in the subsequent sections:

  1. Prepare the data in COCO format
  2. Run the training script for Cascade Mask RCNN / DetectoRS
  3. Run the inference script for Cascade Mask RCNN / DetectoRS
  4. Run the ensemble script

Data Preparation

Note : This step is not required for inference.

All the models present in the paper require data in COCO format to train. Hence , to train the models the images and masks need to be resized and a json file in COCO format is required. The dataset_preparation.py script in the utils folder can be used to perform these tasks. The following flags need to be used for running the dataset_preparation.py script:

usage: dataset_preparation.py [-h] --img_root IMG_ROOT --mask_root MASK_ROOT --dest_root DEST_ROOT

arguments:
  -h, --help            show this help message and exit
  --img_root IMG_ROOT   path to the folder where the images are saved
  --mask_root MASK_ROOT
                        path to the folder where gt instances are saved
  --dest_root DEST_ROOT
                        path to the folder where the COCO format json file and resized masks and images will be saved

Cascade Mask RCNN

For installation of required packages:

$ cat Cascade_Mask_RCNN_X152/requirements.txt | xargs -n 1 pip3 install

Train

The following flags need to be used to run CMRCNN_X152_train.py:

usage: CMRCNN_X152_train.py [-h] --backbone {Original,Effb5,Transformer_Effb5} --train_data_root TRAIN_DATA_ROOT 
--training_json_path TRAINING_JSON_PATH --val_data_root VAL_DATA_ROOT --validation_json_path VALIDATION_JSON_PATH 
--work_dir WORK_DIR [--iterations ITERATIONS] [--batch_size BATCH_SIZE]

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --train_data_root TRAIN_DATA_ROOT
                        path to training data root folder
  --training_json_path TRAINING_JSON_PATH
                        path to the training json file in COCO format
  --val_data_root VAL_DATA_ROOT
                        path to validation data root folder
  --validation_json_path VALIDATION_JSON_PATH
                        path to validation json file in COCO format
  --work_dir WORK_DIR   path to the folder where models and logs will be saved
  --iterations ITERATIONS
  --batch_size BATCH_SIZE

Inference

The following flags need to be used while running CMRCNN_X152_inference.py:

usage: CMRCNN_X152_inference.py [-h] --backbone {Original,Effb5,Transformer_Effb5} 
--saved_model_path SAVED_MODEL_PATH --input_images_folder INPUT_IMAGES_FOLDER --save_path SAVE_PATH

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --saved_model_path SAVED_MODEL_PATH
                        path to the saved model which will be loaded
  --input_images_folder INPUT_IMAGES_FOLDER
                        path to the folder where images to inference on are
                        kept
  --save_path SAVE_PATH
                        path to the folder where the generated masks will be
                        saved

DetectoRS

Preparation script should be run with the following command before running any other file in the DetectoRS folder :

$ bash mmdetection_preparation.sh

For installation of required packages:

$ cat DetectoRS/requirements.txt | xargs -n 1 pip3 install

Train

The following flags need to be used while running DetectoRS_train.py:

usage: DetectoRS_train.py [-h] --backbone {Original,Effb5,Transformer_Effb5} --train_data_root TRAIN_DATA_ROOT 
--training_json_path TRAINING_JSON_PATH [--train_img_prefix TRAIN_IMG_PREFIX] [--train_seg_prefix TRAIN_SEG_PREFIX] 
--val_data_root VAL_DATA_ROOT --validation_json_path VALIDATION_JSON_PATH [--val_img_prefix VAL_IMG_PREFIX] 
[--val_seg_prefix VAL_SEG_PREFIX] --work_dir WORK_DIR [--epochs EPOCHS] [--batch_size BATCH_SIZE]

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --train_data_root TRAIN_DATA_ROOT
                        path to training data root folder
  --training_json_path TRAINING_JSON_PATH
                        path to the training json file in COCO format
  --train_img_prefix TRAIN_IMG_PREFIX
                        prefix path ,if any, to be added to the train_data_root path to access the input images
  --train_seg_prefix TRAIN_SEG_PREFIX
                        prefix path ,if any, to be added to the train_data_root path to access the semantic masks
  --val_data_root VAL_DATA_ROOT
                        path to validation data root folder
  --validation_json_path VALIDATION_JSON_PATH
                        path to validation json file in COCO format
  --val_img_prefix VAL_IMG_PREFIX
                        prefix path ,if any, to be added to the val_data_root path to access the input images
  --val_seg_prefix VAL_SEG_PREFIX
                        prefix path ,if any, to be added to the val_data_root path to access the semantic masks
  --work_dir WORK_DIR   path to the folder where models and logs will be saved
  --epochs EPOCHS
  --batch_size BATCH_SIZE

Note: DetectoRS requires semantic masks along with instance masks during training , hence the arguments - train_seg_prefix and val_seg_prefix

Inference

The following flags need to be used while running DetectoRS_inference.py:

usage: DetectoRS_inference.py [-h] --backbone {Original,Effb5,Transformer_Effb5} 
--saved_model_path SAVED_MODEL_PATH --input_images_folder INPUT_IMAGES_FOLDER --save_path SAVE_PATH

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --saved_model_path SAVED_MODEL_PATH
                        path to the saved model which will be loaded
  --input_images_folder INPUT_IMAGES_FOLDER
                        path to the folder where images to inference on are kept
  --save_path SAVE_PATH
                        path to the folder where the generated masks will be saved

Ensemble

Apart from the individual models, the paper also presents the scores of ensemble of any three models. The ensemble.py script in the utils folder can be used for making ensemble of the outputs of three models , using the following flags :

usage: ensemble.py [-h] --model1_predictions MODEL1_PREDICTIONS --model2_predictions MODEL2_PREDICTIONS --model3_predictions MODEL3_PREDICTIONS --final_predictions FINAL_PREDICTIONS

arguments:
  -h, --help            show this help message and exit
  --model1_predictions MODEL1_PREDICTIONS
                        path to the predictions of first model
  --model2_predictions MODEL2_PREDICTIONS
                        path to the predictions of second model
  --model3_predictions MODEL3_PREDICTIONS
                        path to the predictions of third model
  --final_predictions FINAL_PREDICTIONS
                        path where the ensembled outputs should be saved

Results and Models

Method Backbone mIoU Download
Cascade Mask R-CNN Original(ResNet) 0.9179 model
DetectoRS Original(ResNet) 0.9219 model
Cascade Mask R-CNN EfficientNet-b5 0.8793 model
DetectoRS EfficientNet-b5 0.9038 model
Cascade Mask R-CNN EfficientNet-b5+ViT 0.9281 model
DetectoRS EfficientNet-b5+ViT 0.9273 model
Owner
Datascience IIT-ISM
Datascience IIT-ISM
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021