Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

Overview

SegPC-2021

This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by Deepanshu Pandey, Pradyumna Gupta, Sumit Bhattacharya, Aman Sinha, Rohit Agarwal.

About the Challenge

Website link: https://segpc-2021.grand-challenge.org/SegPC-2021/

Overview: In recent years, with the advancement of Deep Learning, there has been tremendous efforts in the application of image processing to build AI based models for cancer diagnosis. This challenge is also one such effort. It deals with the segmentation of plasma cell cancer, namely, Multiple Myeloma (MM), which is a type of blood cancer. We are provided with the stained color normalization imag of the cells.

Image distribution: The cells may have different structures because:

  • There is a varying amount of nucleus and cytoplasm from one cell to another.
  • The cells may appear in clusters or as isolated single cells.
  • The cells appearing in clusters may have three cases -
    • Cytoplasm of two cells touch each other,
    • The cytoplasm of one cell and nucleus of another touch each other,
    • nucleus of cells touch each other. Since the cytoplasm and nucleus have different colors, the segmentation of cells may pose challenges.
  • There may be multiple cells touching each other in the cluster.
  • There may be unstained cells, say a red blood cell underneath the cell of interest, changing its color and shade.
  • The cytoplasm of a cell may be close to the background of the whole image, making it difficult to identify the boundary of the cell and segment it.

Getting Started

We recommend using Python 3.7 for running the scripts in this repository. The necessary packages can be installed using requirements.txt in the respective folders. Since all of our work has been done on Google Colaboratory, the requirements.txt may have more packages/modules than is actually required and it might take quite long to install everything. Hence,for such a case, the folders of both the models also contain an essential-requirements.txt file which contains some essential packages that need to installed beforehand, while the other fundamental packages can be installed later as their need shows up as an error when running the given training and inference scripts.

To clone this repository:

$ git clone https://github.com/dsciitism/SegPC-2021

To run this repository, following the given steps using the sections mentioned in the subsequent sections:

  1. Prepare the data in COCO format
  2. Run the training script for Cascade Mask RCNN / DetectoRS
  3. Run the inference script for Cascade Mask RCNN / DetectoRS
  4. Run the ensemble script

Data Preparation

Note : This step is not required for inference.

All the models present in the paper require data in COCO format to train. Hence , to train the models the images and masks need to be resized and a json file in COCO format is required. The dataset_preparation.py script in the utils folder can be used to perform these tasks. The following flags need to be used for running the dataset_preparation.py script:

usage: dataset_preparation.py [-h] --img_root IMG_ROOT --mask_root MASK_ROOT --dest_root DEST_ROOT

arguments:
  -h, --help            show this help message and exit
  --img_root IMG_ROOT   path to the folder where the images are saved
  --mask_root MASK_ROOT
                        path to the folder where gt instances are saved
  --dest_root DEST_ROOT
                        path to the folder where the COCO format json file and resized masks and images will be saved

Cascade Mask RCNN

For installation of required packages:

$ cat Cascade_Mask_RCNN_X152/requirements.txt | xargs -n 1 pip3 install

Train

The following flags need to be used to run CMRCNN_X152_train.py:

usage: CMRCNN_X152_train.py [-h] --backbone {Original,Effb5,Transformer_Effb5} --train_data_root TRAIN_DATA_ROOT 
--training_json_path TRAINING_JSON_PATH --val_data_root VAL_DATA_ROOT --validation_json_path VALIDATION_JSON_PATH 
--work_dir WORK_DIR [--iterations ITERATIONS] [--batch_size BATCH_SIZE]

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --train_data_root TRAIN_DATA_ROOT
                        path to training data root folder
  --training_json_path TRAINING_JSON_PATH
                        path to the training json file in COCO format
  --val_data_root VAL_DATA_ROOT
                        path to validation data root folder
  --validation_json_path VALIDATION_JSON_PATH
                        path to validation json file in COCO format
  --work_dir WORK_DIR   path to the folder where models and logs will be saved
  --iterations ITERATIONS
  --batch_size BATCH_SIZE

Inference

The following flags need to be used while running CMRCNN_X152_inference.py:

usage: CMRCNN_X152_inference.py [-h] --backbone {Original,Effb5,Transformer_Effb5} 
--saved_model_path SAVED_MODEL_PATH --input_images_folder INPUT_IMAGES_FOLDER --save_path SAVE_PATH

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --saved_model_path SAVED_MODEL_PATH
                        path to the saved model which will be loaded
  --input_images_folder INPUT_IMAGES_FOLDER
                        path to the folder where images to inference on are
                        kept
  --save_path SAVE_PATH
                        path to the folder where the generated masks will be
                        saved

DetectoRS

Preparation script should be run with the following command before running any other file in the DetectoRS folder :

$ bash mmdetection_preparation.sh

For installation of required packages:

$ cat DetectoRS/requirements.txt | xargs -n 1 pip3 install

Train

The following flags need to be used while running DetectoRS_train.py:

usage: DetectoRS_train.py [-h] --backbone {Original,Effb5,Transformer_Effb5} --train_data_root TRAIN_DATA_ROOT 
--training_json_path TRAINING_JSON_PATH [--train_img_prefix TRAIN_IMG_PREFIX] [--train_seg_prefix TRAIN_SEG_PREFIX] 
--val_data_root VAL_DATA_ROOT --validation_json_path VALIDATION_JSON_PATH [--val_img_prefix VAL_IMG_PREFIX] 
[--val_seg_prefix VAL_SEG_PREFIX] --work_dir WORK_DIR [--epochs EPOCHS] [--batch_size BATCH_SIZE]

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --train_data_root TRAIN_DATA_ROOT
                        path to training data root folder
  --training_json_path TRAINING_JSON_PATH
                        path to the training json file in COCO format
  --train_img_prefix TRAIN_IMG_PREFIX
                        prefix path ,if any, to be added to the train_data_root path to access the input images
  --train_seg_prefix TRAIN_SEG_PREFIX
                        prefix path ,if any, to be added to the train_data_root path to access the semantic masks
  --val_data_root VAL_DATA_ROOT
                        path to validation data root folder
  --validation_json_path VALIDATION_JSON_PATH
                        path to validation json file in COCO format
  --val_img_prefix VAL_IMG_PREFIX
                        prefix path ,if any, to be added to the val_data_root path to access the input images
  --val_seg_prefix VAL_SEG_PREFIX
                        prefix path ,if any, to be added to the val_data_root path to access the semantic masks
  --work_dir WORK_DIR   path to the folder where models and logs will be saved
  --epochs EPOCHS
  --batch_size BATCH_SIZE

Note: DetectoRS requires semantic masks along with instance masks during training , hence the arguments - train_seg_prefix and val_seg_prefix

Inference

The following flags need to be used while running DetectoRS_inference.py:

usage: DetectoRS_inference.py [-h] --backbone {Original,Effb5,Transformer_Effb5} 
--saved_model_path SAVED_MODEL_PATH --input_images_folder INPUT_IMAGES_FOLDER --save_path SAVE_PATH

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --saved_model_path SAVED_MODEL_PATH
                        path to the saved model which will be loaded
  --input_images_folder INPUT_IMAGES_FOLDER
                        path to the folder where images to inference on are kept
  --save_path SAVE_PATH
                        path to the folder where the generated masks will be saved

Ensemble

Apart from the individual models, the paper also presents the scores of ensemble of any three models. The ensemble.py script in the utils folder can be used for making ensemble of the outputs of three models , using the following flags :

usage: ensemble.py [-h] --model1_predictions MODEL1_PREDICTIONS --model2_predictions MODEL2_PREDICTIONS --model3_predictions MODEL3_PREDICTIONS --final_predictions FINAL_PREDICTIONS

arguments:
  -h, --help            show this help message and exit
  --model1_predictions MODEL1_PREDICTIONS
                        path to the predictions of first model
  --model2_predictions MODEL2_PREDICTIONS
                        path to the predictions of second model
  --model3_predictions MODEL3_PREDICTIONS
                        path to the predictions of third model
  --final_predictions FINAL_PREDICTIONS
                        path where the ensembled outputs should be saved

Results and Models

Method Backbone mIoU Download
Cascade Mask R-CNN Original(ResNet) 0.9179 model
DetectoRS Original(ResNet) 0.9219 model
Cascade Mask R-CNN EfficientNet-b5 0.8793 model
DetectoRS EfficientNet-b5 0.9038 model
Cascade Mask R-CNN EfficientNet-b5+ViT 0.9281 model
DetectoRS EfficientNet-b5+ViT 0.9273 model
Owner
Datascience IIT-ISM
Datascience IIT-ISM
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022