Predictive Modeling & Analytics on Home Equity Line of Credit

Overview

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python)

HMEQ Data Set

In this assignment we will use Python to examine a data set containing Home Equity Loans. The data set contains two target variables. The first target, TARGET_BAD_FLAG indicates whether or not the loan defaulted. If the value is set to 1, then the loan went bad and the bank lost money. If the value is set to 0, the loan was repaid.

The second target, TARGET_LOSS_AMT, indicates the amount of money that was lost for loans that went bad. The remaining variables contain information about the customer at the time that the loan was issued.

This is the data that we will use throughout this class in order to develop predictive models that will be used to determine the level of risk for each loan.

As with all real world data, this data is far from perfect.

It contains both numerical and categorical variables. It contains missing data. It contains outliers.

Table of Contents

  • Data Preparation
  • Tree Based Models
  • Regression Based Models
  • Neural Network

Building Machine Learning Models

Developed different predictive models to determine the level risk of each loan based on whether or not loans defaulted, and loss amount on bad loans. Evaluated each model with ROC curve and RMSE accuracy metrics.

Data Preparation

  • Download the HMEQ Data set
  • Read the data into Python
  • Explore both the input and target variables using statistical techniques.
  • Explore both the input and target variables using graphs and other visualization.
  • Look for relationships between the input variables and the targets.
  • Fix (impute) all missing data.
  • Note: For numerical data, create a flag variable to indicate if the value was missing
  • Convert all categorical variables numeric variables

Tree Based Models

We will continue to use Python to develop predictive models. In this assignment, we will use three different tree based techniques to analyze the data: DECISION TREES, RANDOM FORESTS, and GRADIENT BOOSTING. The deliverables for each technique are given below.

Create a Training and Test Data Set:

Decision Trees:

  • Develop a decision tree to predict the probability of default
  • Calculate the accuracy of the model on both the training and test data set
  • Create a graph that shows the ROC curves for both the training and test data set. Clearly label each curve and display the Area Under the ROC curve.
  • Display the Decision Tree using a Graphviz program
  • List the variables included in the decision tree that predict loan default.
  • Develop a decision tree to predict the loss amount assuming that the loan defaults
  • Calculate the RMSE for both the training data set and the test data set
  • Display the Decision Tree using a Graphviz program
  • List the variables included in the decision tree that predict loss amount.

Random Forests:

  • Develop a Random Forest to predict the probability of default
  • Calculate the accuracy of the model on both the training and test data set
  • Create a graph that shows the ROC curves for both the training and test data set. Clearly label each curve and display the Area Under the ROC curve.
  • List the variables included in the Random Forest that predict loan default.
  • Develop a Random Forest to predict the loss amount assuming that the loan defaults
  • Calculate the RMSE for both the training data set and the test data set
  • List the variables included in the Random Forest that predict loss amount.

Gradient Boosting:

  • Develop a Gradient Boosting model to predict the probability of default
  • Calculate the accuracy of the model on both the training and test data set
  • Create a graph that shows the ROC curves for both the training and test data set. Clearly - label each curve and display the Area Under the ROC curve.
  • List the variables included in the Gradient Boosting that predict loan default.
  • Develop a Gradient Boosting to predict the loss amount assuming that the loan defaults
  • Calculate the RMSE for both the training data set and the test data set
  • List the variables included in the Gradient Boosting that predict loss amount.

ROC Curves:

  • Generate a ROC curve for the Decision Tree, Random Forest, and Gradient Boosting models using the Test Data Set
  • Use different colors for each curve and clearly label them
  • Include the Area under the ROC Curve (AUC) on the graph.

Regression Based Models

we will continue to use Python to develop predictive models. In this assignment, we will use two different types of regression: Linear and Logistic. We will use Logistic regression to determine the probability of a crash. Linear regression will be used to calculate the damages assuming that a crash occurs

Create a Training and Test Data Set:

Logistic Regression

  • Develop a logistic regression model to determine the probability of a loan default. Use all of the variables.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by a DECISION TREE.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by a RANDOM FOREST.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by a GRADIENT BOOSTING model.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by STEPWISE SELECTION.
  • For each of the models
    • Calculate the accuracy of the model on both the training and test data set
    • Create a graph that shows the ROC curves for both the training and test data set. Clearly label each curve and display the Area Under the ROC curve.
    • Display a ROC curve for the test data with all your models on the same graph (tree based and regression). Discuss which one is the most accurate. Which one would you recommend using?
    • For one of the Regression Models, print the coefficients. Do the variables make sense? If not, what would you recommend?

Linear Regression:

  • Develop a linear regression model to determine the expected loss if the loan defaults. Use all of the variables.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by a DECISION TREE.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by a RANDOM FOREST.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by a GRADIENT BOOSTING model.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by STEPWISE SELECTION.
  • For each of the models
    • Calculate the RMSE for both the training data set and the test data set
    • List the RMSE for the test data set for all of the models created (tree based and regression). Discuss which one is the most accurate. Which one would you recommend using?
    • For one of the Regression Models, print the coefficients. Do the variables make sense? If not, what would you recommend?

Neural Networks

we will continue to use Python to develop predictive models. In this assignment, we will use two different types of regression: Linear and Logistic. We will use Logistic regression to determine the probability of a crash. Linear regression will be used to calculate the damages assuming that a crash occurs.

Create a Training and Test Data Set:

Tensor Flow Model To Predict Loan Defaults:

  • Develop a model using Tensor Flow that will predict Loan Default.

    • For your model, do the following:
    • Try at least three different Activation Functions
    • Try one and two hidden layers
    • Try using a Dropout Layer
  • Explore using a variable selection technique

  • For each of the models

    • Calculate the accuracy of the model on both the training and test data set
    • Create a graph that shows the ROC curves for both the training and test data set.
    • Clearly label each curve and display the Area Under the ROC curve.
    • Display a ROC curve for the test data with all your models on the same graph (tree based, regression, and TF). Discuss which one is the most accurate. Which one would you recommend using?

Tensor Flow Model to Predict Loss Given Default:

  • Develop a model using Tensor Flow that will predict Loan Default.
  • For your model, do the following:
    • Try at least three different Activation Functions
    • Try one and two hidden layers
    • Try using a Dropout Layer
  • Explore using a variable selection technique
  • For each of the models
    • Calculate the RMSE for both the training data set and the test data set
    • List the RMSE for the test data set for all of the models created (tree based, regression, and TF). Discuss which one is the most accurate. Which one would you recommend using?

Data Dictionary

VARIABLE DEFINITION ROLE TYPE CONVENTIONAL WISDOM
TARGET_BAD_FLAG BAD=1 (Loan was defaulted) TARGET BINARY HMEQ = Home Equity Line of Credit Loan. BINARY TARGET
TARGET_LOSS_AMT If loan was Bad, this was the amount not repaid. TARGET NUMBER HMEQ = Home Equity Line of Credit Loan. NUMERICAL TARGET
LOAN HMEQ Credit Line INPUT NUMBER The bigger the loan, the more risky the person
MORTDUE Current Outstanding Mortgage Balance INPUT NUMBER If you owe a lot of money on your current mortgage versus the value of your house, you are more risky.
VALUE Value of your house INPUT NUMBER If you owe a lot of money on your current mortgage versus the value of your house, you are more risky.
REASON Why do you want a loan? INPUT CATEGORY If you are consolidating debt, that might mean you are having financial trouble.
JOB What do you do for a living? INPUT CATEGORY Some jobs are unstable (and therefore are more risky)
YOJ Years on Job INPUT NUMBER If you habe been at your job for a while, you are less likely to lose that job. That makes you less risky.
DEROG Derogatory Marks on Credit Record. These are very bad things that stay on your credit report for 7 years. These include bankruptcies or leins placed on your property. INPUT NUMBER Lots of Derogatories mean that something really bad happened to you (such as a bankruptcy) in your past. This makes you more risky.
DELINQ Delinquencies on your current credit report. This refers to the number of times you were overdue when paying bills in the last three years. INPUT NUMBER When you have a lot of delinquencies, you might be more likely to default on a loan.
CLAGE Credit Line Age (in months) is how long you have had credit. Are you a new high school student with a new credit card or have you had credit cards for many years? INPUT NUMBER If you have had credit for a long time, you are considered less risky than a new high school student.
NINQ Number of inquiries. This is the number of times within the last 3 years that you went out looking for credit (such as opening a credit card at a store) INPUT NUMBER Conventional wisdom in that if you are looking for more credit, you might be in financial trouble. Thus you are risky.
CLNO Number of credit lines you have (credit cards, loans, etc.). INPUT NUMBER This is a double edged swoard. Peole who have a lot of credit lines tend to be safe. The reason is that if OTHER PEOPLE think you are trustworthy enough for a credit card, then maybe you are. However, if you have too many credit lines, you might be risky because you have the potential to run up a lot of debt.
DEBTINC Debt to Income Ratio. Take the money you spend every month and divide it by the amount of money you earn every month. INPUT NUMBER If your debt to income ratio is high then you are risky because you might not be able to pay your bills.
Owner
Dhaval Patel
Dhaval Patel
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
A data structure that extends pyspark.sql.DataFrame with metadata information.

MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info

Invent Analytics 8 Feb 15, 2022
Important dataframe statistics with a single command

quick_eda Receiving dataframe statistics with one command Project description A python package for Data Scientists, Students, ML Engineers and anyone

Sven Eschlbeck 2 Dec 19, 2021
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
📊 Python Flask game that consolidates data from Nasdaq, allowing the user to practice buying and selling stocks.

Web Trader Web Trader is a trading website that consolidates data from Nasdaq, allowing the user to search up the ticker symbol and price of any stock

Paulina Khew 21 Aug 30, 2022
Collections of pydantic models

pydantic-collections The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models

Roman Snegirev 20 Dec 26, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.

Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln

Cristian Garcia 1.4k Dec 31, 2022
Data Analysis for First Year Laboratory at Imperial College, London.

Data Analysis for First Year Laboratory at Imperial College, London. For personal reference only, and to reference in lab reports and lab books.

Martin He 0 Aug 29, 2022
ETL flow framework based on Yaml configs in Python

ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.

Павел Максимов 18 Jul 06, 2022
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
Methylation/modified base calling separated from basecalling.

Remora Methylation/modified base calling separated from basecalling. Remora primarily provides an API to call modified bases for basecaller programs s

Oxford Nanopore Technologies 72 Jan 05, 2023
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

1 Feb 07, 2022
Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format

Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format.

Brady Law 2 Dec 01, 2021
This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot.

superSFS This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot. It is easy-to-use and runing fast. What you s

3 Dec 16, 2022
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
Uses MIT/MEDSL, New York Times, and US Census datasources to analyze per-county COVID-19 deaths.

Covid County Executive summary Setup Install miniconda, then in the command line, run conda create -n covid-county conda activate covid-county conda i

Ahmed Fasih 1 Dec 22, 2021