Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

Overview

Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

🚙 🛵 🚛 🚌

A project for counting vehicles using YOLOv4 for training, DeepSORT for tracking, Flask for deploying to web (watch result purpose only) and Ngrok for public IP address

References

I want to give my big thanks to all of these authors' repo:

Getting Started

This project has 3 main parts:

  1. Preparing data
  2. Training model using the power of YOLOv4
  3. Implementing DeepSORT algorithm for counting vehicles

Preparing data

Preparing data notebook

I splitted my data into 2 scenes: daytime and nighttime, and training 8 classes (4 classes each scene, which are motorbike, car, bus, truck).

Prepare your own data or you can download my cleaned data with annotations:

If you prepare your own data, remember your annotation files fit this format:

  1. Every image has its own annotation file (.txt)
  2. Each file contains a list of objects' bounding box (read this for more details):

   
    
    
     
     
      
      
       
       
       
         ... 
       
      
      
     
     
    
    
   
   

Training model using YOLOv4

Training model notebook

Training model on your local computer is really complicated in environment installation and slow if you don't have a powerful GPU. In this case, I used Google Colab.

Read more: Testing your trained model on local machine with OpenCV

Implementing DeepSORT algorithm for counting vehicles

Implementing DeepSORT notebook

First, setting up environment on your machine:

Conda (Recommended)

# Tensorflow CPU
conda env create -f conda-cpu.yml
conda activate yolov4-cpu

# Tensorflow GPU
conda env create -f conda-gpu.yml
conda activate yolov4-gpu

Pip

(TensorFlow 2 packages require a pip version > 19.0.)

# TensorFlow CPU
pip install -r requirements.txt

# TensorFlow GPU
pip install -r requirements-gpu.txt

# Google Colab
!pip install -r requirements-colab.txt

Convert YOLOv4 model to Tensorflow Keras

Copy your trained model in previous part to this project and run save_model.py in cmd:

  • --weights: Path to .weights file (your trained model)
  • --output: Path to converted model.
  • --model: Model version (yolov4 in this case)
python save_model.py --weights ./yolov4_final.weights --output ./checkpoints/yolov4-416 --model yolov4

Download my .weights model if you want: GGDrive mirror

Counting now!

Import VehiclesCounting class in object_tracker.py file and using run() to start running:

# Import this main file
from object_tracker import VehiclesCounting
# Initialize
vc = VehiclesCounting(cam_name,
framework='tf', 
weights='./checkpoints/yolov4-416', 
size=416, 
tiny=False, 
model='yolov4', 
video='./data/video/test.mp4', 
output=None, 
output_format='XVID', 
iou=0.45, 
score=0.5, 
dont_show=False, 
info=False, 
count=False,
detect_line_position=0.5
detect_line_angle=0)
  • cam_name: input your camera name
  • framework: choose your model framework (tf, tflite, trt)
  • weights: path to your .weights
  • size: resize images to
  • tiny: (yolo,yolo-tiny)
  • model: (yolov3,yolov4)
  • video: path to your video or set 0 for webcam or youtube url
  • output: path to your results
  • output_format: codec used in VideoWriter when saving video to file
  • iou: iou threshold
  • score: score threshold
  • dont_show: dont show video output
  • info: show detailed info of tracked objects
  • count: count objects being tracked on screen
  • detect_line_position: (0..1) of height of video frame.
  • detect_line_angle: (0..180) degrees of detect line.
# Run it
vc.run()

Contact me

Owner
Duong Tran Thanh
I love learning AI and mobile development
Duong Tran Thanh
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023