[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

Related tags

Deep LearningDRAGON
Overview

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors

Paper
Project Website
Video

Overview

DRAGON learns to correct the bias towards head classes on a sample-by-sample basis; and fuse information from class-descriptions to improve the tail-class accuracy, as described in our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors".

Requirements

  • numpy 1.15.4
  • pandas 0.25.3
  • scipy 1.1.0
  • tensorflow 1.14.0
  • keras 2.2.5

Quick installation under Anaconda:

conda env create -f requirements.yml

Data Preparation

Datasets: CUB, SUN and AWA.
Download data.tar from here, untar it and place it under the project root directory.

DRAGON
| data
   |--CUB
   |--SUN
   |--AWA1
| attribute_expert
| dataset_handler
| fusion
...

Train Experts and Fusion Module

Reproduce results for DRAGON and its modules (Table 1 in our paper):
Training and evaluation should be according to the training protocol described in our paper (Section 5 - training):

  1. First, train each expert without the hold-out set (partial training set) by executing the following commands:

    • CUB:
      # Visual-Expert training
      PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0003 --l2=0.005
      # Attribute-Expert training 
      PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=1e-7 --LG_lambda=0.0001 --SG_gain=3 --SG_psi=0.01 --SG_num_K=-1
      
    • SUN:
      # Visual-Expert training
      PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0001 --l2=0.01
      # Attribute-Expert training 
      PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=1e-6 --LG_lambda=0.001 --SG_gain=10 --SG_psi=0.01 --SG_num_K=-1
      
    • AWA:
      # Visual-Expert training
      PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0003 --l2=0.1
      # Attribute-Expert training 
      PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=0.001 --LG_lambda=0.001 --SG_gain=1 --SG_psi=0.01 --SG_num_K=-1
      
  2. Then, re-train each expert, with the hold-out set (full train set) by executing above commands with the --test_mode flag as a parameter.

  3. Rename Visual-lr=0.0003_l2=0.005 to Visual and LAGO-lr=0.001_beta=1e-07_lambda=0.0001_gain=3.0_psi=0.01 to LAGO (this is essential since the FusionModule finds trained experts by their names, without extensions).

  4. Train the fusion-module on partially trained experts (models from step 1) by running the following commands:

    • CUB:
      PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --data_dir=data --initial_learning_rate=0.005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=2
      
    • SUN:
      PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --data_dir=data --initial_learning_rate=0.0005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=4
      
    • AWA:
      PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --data_dir=data --initial_learning_rate=0.005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=4
      
  5. Finally, evaluate the fusion-module with fully-trained experts (models from step 2), by executing step 4 commands with the --test_mode flag as a parameter.

Pre-trained Models and Checkpoints

Download checkpoints.tar from here, untar it and place it under the project root directory.

checkpoints
  |--CUB
      |--Visual
      |--LAGO
      |--Dual2ParametricRescale-lr=0.005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)
  |--SUN
      |--Visual
      |--LAGO
      |--Dual4ParametricRescale-lr=0.0005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)
  |--AWA1
      |--Visual
      |--LAGO
      |--Dual4ParametricRescale-lr=0.005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)

Cite Our Paper

If you find our paper and repo useful, please cite:

@InProceedings{samuel2020longtail,
  author    = {Samuel, Dvir and Atzmon, Yuval and Chechik, Gal},
  title     = {From Generalized Zero-Shot Learning to Long-Tail With Class Descriptors},
  booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
  year      = {2021}}
Owner
Dvir Samuel
Dvir Samuel
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022