A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

Overview

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

This repository contains a PyTorch implementation for the paper: Deep Pyramidal Residual Networks (CVPR 2017, Dongyoon Han*, Jiwhan Kim*, and Junmo Kim, (equally contributed by the authors*)). The code in this repository is based on the example provided in PyTorch examples and the nice implementation of Densely Connected Convolutional Networks.

Two other implementations with LuaTorch and Caffe are provided:

  1. A LuaTorch implementation for PyramidNets,
  2. A Caffe implementation for PyramidNets.

Usage examples

To train additive PyramidNet-200 (alpha=300 with bottleneck) on ImageNet-1k dataset with 8 GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train.py --data ~/dataset/ILSVRC/Data/CLS-LOC/ --net_type pyramidnet --lr 0.05 --batch_size 128 --depth 200 -j 16 --alpha 300 --print-freq 1 --expname PyramidNet-200 --dataset imagenet --epochs 100

To train additive PyramidNet-110 (alpha=48 without bottleneck) on CIFAR-10 dataset with a single-GPU:

CUDA_VISIBLE_DEVICES=0 python train.py --net_type pyramidnet --alpha 64 --depth 110 --no-bottleneck --batch_size 32 --lr 0.025 --print-freq 1 --expname PyramidNet-110 --dataset cifar10 --epochs 300

To train additive PyramidNet-164 (alpha=48 with bottleneck) on CIFAR-100 dataset with 4 GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --net_type pyramidnet --alpha 48 --depth 164 --batch_size 128 --lr 0.5 --print-freq 1 --expname PyramidNet-164 --dataset cifar100 --epochs 300

Notes

  1. This implementation contains the training (+test) code for add-PyramidNet architecture on ImageNet-1k dataset, CIFAR-10 and CIFAR-100 datasets.
  2. The traditional data augmentation for ImageNet and CIFAR datasets are used by following fb.resnet.torch.
  3. The example codes for ResNet and Pre-ResNet are also included.
  4. For efficient training on ImageNet-1k dataset, Intel MKL and NVIDIA(nccl) are prerequistes. Please check the official PyTorch github for the installation.

Tracking training progress with TensorBoard

Thanks to the implementation, which support the TensorBoard to track training progress efficiently, all the experiments can be tracked with tensorboard_logger.

Tensorboard_logger can be installed with

pip install tensorboard_logger

Paper Preview

Abstract

Deep convolutional neural networks (DCNNs) have shown remarkable performance in image classification tasks in recent years. Generally, deep neural network architectures are stacks consisting of a large number of convolution layers, and they perform downsampling along the spatial dimension via pooling to reduce memory usage. At the same time, the feature map dimension (i.e., the number of channels) is sharply increased at downsampling locations, which is essential to ensure effective performance because it increases the capability of high-level attributes. Moreover, this also applies to residual networks and is very closely related to their performance. In this research, instead of using downsampling to achieve a sharp increase at each residual unit, we gradually increase the feature map dimension at all the units to involve as many locations as possible. This is discussed in depth together with our new insights as it has proven to be an effective design to improve the generalization ability. Furthermore, we propose a novel residual unit capable of further improving the classification accuracy with our new network architecture. Experiments on benchmark CIFAR datasets have shown that our network architecture has a superior generalization ability compared to the original residual networks.

Schematic Illustration

We provide a simple schematic illustration to compare the several network architectures, which have (a) basic residual units, (b) bottleneck, (c) wide residual units, and (d) our pyramidal residual units, and (e) our pyramidal bottleneck residual units, as follows:

image

Experimental Results

  1. The results are readily reproduced, which show the same performances as those reproduced with A LuaTorch implementation for PyramidNets.

  2. Comparison of the state-of-the-art networks by [Top-1 Test Error Rates VS # of Parameters]:

image

  1. Top-1 test error rates (%) on CIFAR datasets are shown in the following table. All the results of PyramidNets are produced with additive PyramidNets, and α denotes alpha (the widening factor). “Output Feat. Dim.” denotes the feature dimension of just before the last softmax classifier.

image

ImageNet-1k Pretrained Models

  • A pretrained model of PyramidNet-101-360 is trained from scratch using the code in this repository (single-crop (224x224) validation error rates are reported):
Network Type Alpha # of Params Top-1 err(%) Top-5 err(%) Model File
ResNet-101 (Caffe model) - 44.7M 23.6 7.1 Original Model
ResNet-101 (Luatorch model) - 44.7M 22.44 6.21 Original Model
PyramidNet-v1-101 360 42.5M 21.98 6.20 Download
  • Note that the above widely-used ResNet-101 (Caffe model) is trained with the images, where the pixel intensities are in [0,255] and are centered by the mean image, our PyramidNet-101 is trained with the images where the pixel values are standardized.
  • The model is originally trained with PyTorch-0.4, and the keys of num_batches_tracked were excluded for convenience (the BatchNorm2d layer in PyTorch (>=0.4) contains the key of num_batches_tracked by track_running_stats).

Updates

  1. Some minor bugs are fixed (2018/02/22).
  2. train.py is updated (including ImagNet-1k training code) (2018/04/06).
  3. resnet.py and PyramidNet.py are updated (2018/04/06).
  4. preresnet.py (Pre-ResNet architecture) is uploaded (2018/04/06).
  5. A pretrained model using PyTorch is uploaded (2018/07/09).

Citation

Please cite our paper if PyramidNets are used:

@article{DPRN,
  title={Deep Pyramidal Residual Networks},
  author={Han, Dongyoon and Kim, Jiwhan and Kim, Junmo},
  journal={IEEE CVPR},
  year={2017}
}

If this implementation is useful, please cite or acknowledge this repository on your work.

Contact

Dongyoon Han ([email protected]), Jiwhan Kim ([email protected]), Junmo Kim ([email protected])

Owner
Greg Dongyoon Han
Greg Dongyoon Han
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022