A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

Related tags

Deep LearningPGL-SUM
Overview

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization

PyTorch Implementation of PGL-SUM

  • From "PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021.
  • Written by Evlampios Apostolidis, Georgios Balaouras, Vasileios Mezaris and Ioannis Patras.
  • This software can be used for training a deep learning architecture which estimates frames' importance after modeling their dependencies with the help of global and local multi-head attention mechanisms that integrate a positional encoding component. Training is performed in a supervised manner based on ground-truth data (human-generated video summaries). After being trained on a collection of videos, the PGL-SUM model is capable of producing representative summaries for unseen videos, according to a user-specified time-budget about the summary duration.

Main dependencies

Developed, checked and verified on an Ubuntu 20.04.3 PC with a NVIDIA TITAN Xp GPU. Main packages required:

Python PyTorch CUDA Version cuDNN Version TensorBoard TensorFlow NumPy H5py
3.8(.8) 1.7.1 11.0 8005 2.4.1 2.3.0 1.20.2 2.10.0

Data

Structured h5 files with the video features and annotations of the SumMe and TVSum datasets are available within the data folder. The GoogleNet features of the video frames were extracted by Ke Zhang and Wei-Lun Chao and the h5 files were obtained from Kaiyang Zhou. These files have the following structure:

/key
    /features                 2D-array with shape (n_steps, feature-dimension)
    /gtscore                  1D-array with shape (n_steps), stores ground truth importance score (used for training, e.g. regression loss)
    /user_summary             2D-array with shape (num_users, n_frames), each row is a binary vector (used for test)
    /change_points            2D-array with shape (num_segments, 2), each row stores indices of a segment
    /n_frame_per_seg          1D-array with shape (num_segments), indicates number of frames in each segment
    /n_frames                 number of frames in original video
    /picks                    positions of subsampled frames in original video
    /n_steps                  number of subsampled frames
    /gtsummary                1D-array with shape (n_steps), ground truth summary provided by user (used for training, e.g. maximum likelihood)
    /video_name (optional)    original video name, only available for SumMe dataset

Original videos and annotations for each dataset are also available in the dataset providers' webpages:

Training

To train the model using one of the aforementioned datasets and for a number of randomly created splits of the dataset (where in each split 80% of the data is used for training and 20% for testing) use the corresponding JSON file that is included in the data/splits directory. This file contains the 5 randomly-generated splits that were utilized in our experiments.

For training the model using a single split, run:

python model/main.py --split_index N --n_epochs E --batch_size B --video_type 'dataset_name'

where, N refers to the index of the used data split, E refers to the number of training epochs, B refers to the batch size, and dataset_name refers to the name of the used dataset.

Alternatively, to train the model for all 5 splits, use the run_summe_splits.sh and/or run_tvsum_splits.sh script and do the following:

chmod +x model/run_summe_splits.sh    # Makes the script executable.
chmod +x model/run_tvsum_splits.sh    # Makes the script executable.
./model/run_summe_splits.sh           # Runs the script. 
./model/run_tvsum_splits.sh           # Runs the script.  

Please note that after each training epoch the algorithm performs an evaluation step, using the trained model to compute the importance scores for the frames of each video of the test set. These scores are then used by the provided evaluation scripts to assess the overall performance of the model (in F-Score).

The progress of the training can be monitored via the TensorBoard platform and by:

  • opening a command line (cmd) and running: tensorboard --logdir=/path/to/log-directory --host=localhost
  • opening a browser and pasting the returned URL from cmd.

Configurations

Setup for the training process:

  • In data_loader.py, specify the path to the h5 file of the used dataset, and the path to the JSON file containing data about the utilized data splits.
  • In configs.py, define the directory where the analysis results will be saved to.

Arguments in configs.py:

Parameter name Description Default Value Options
--mode Mode for the configuration. 'train' 'train', 'test'
--verbose Print or not training messages. 'false' 'true', 'false'
--video_type Used dataset for training the model. 'SumMe' 'SumMe', 'TVSum'
--input_size Size of the input feature vectors. 1024 int > 0
--seed Chosen number for generating reproducible random numbers. 12345 None, int
--fusion Type of the used approach for feature fusion. 'add' None, 'add', 'mult', 'avg', 'max'
--n_segments Number of video segments; equal to the number of local attention mechanisms. 4 None, int ≥ 2
--pos_enc Type of the applied positional encoding. 'absolute' None, 'absolute', 'relative'
--heads Number of heads of the global attention mechanism. 8 int > 0
--n_epochs Number of training epochs. 200 int > 0
--batch_size Size of the training batch, 20 for 'SumMe' and 40 for 'TVSum'. 20 0 < int ≤ len(Dataset)
--clip Gradient norm clipping parameter. 5 float
--lr Value of the adopted learning rate. 5e-5 float
--l2_req Value of the regularization factor. 1e-5 float
--split_index Index of the utilized data split. 0 0 ≤ int ≤ 4
--init_type Weight initialization method. 'xavier' None, 'xavier', 'normal', 'kaiming', 'orthogonal'
--init_gain Scaling factor for the initialization methods. None None, float

Model Selection and Evaluation

The utilized model selection criterion relies on the post-processing of the calculated losses over the training epochs and enables the selection of a well-trained model by indicating the training epoch. To evaluate the trained models of the architecture and automatically select a well-trained model, define the dataset_path in compute_fscores.py and run evaluate_exp.sh. To run this file, specify:

  • base_path/exp$exp_num: the path to the folder where the analysis results are stored,
  • $dataset: the dataset being used, and
  • $eval_method: the used approach for computing the overall F-Score after comparing the generated summary with all the available user summaries (i.e., 'max' for SumMe and 'avg' for TVSum).
sh evaluation/evaluate_exp.sh $exp_num $dataset $eval_method

For further details about the adopted structure of directories in our implementation, please check line #6 and line #11 of evaluate_exp.sh.

Trained models and Inference

We have released the trained models for our main experiments -namely Table III and Table IV- of our ISM 2021 paper. The inference.py script, lets you evaluate the -reported- trained models, for our 5 randomly-created data splits. Firstly, download the trained models, with the following script:

sudo apt-get install unzip wget
wget "https://zenodo.org/record/5635735/files/pretrained_models.zip?download=1" -O pretrained_models.zip
unzip pretrained_models.zip -d inference
rm -f pretrained_models.zip

Then, specify the PATHs for the model, the split_file and the dataset in use. Finally, run the script with the following syntax

python inference/inference.py --table ID --dataset 'dataset_name'

where, ID refers to the id of the reported table, and dataset_name refers to the name of the used dataset.

License

Copyright (c) 2021, Evlampios Apostolidis, Georgios Balaouras, Vasileios Mezaris, Ioannis Patras / CERTH-ITI. All rights reserved. This code is provided for academic, non-commercial use only. Redistribution and use in source and binary forms, with or without modification, are permitted for academic non-commercial use provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation provided with the distribution.

This software is provided by the authors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the authors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Acknowledgement

This work was supported by the EU Horizon 2020 programme under grant agreement H2020-832921 MIRROR, and by EPSRC under grant No. EP/R026424/1.
Owner
Evlampios Apostolidis
Evlampios Apostolidis
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022