Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Related tags

Deep LearningRPS_LJE
Overview

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models

This repository is the official implementation of Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021. (will update the link)

Introduction

We propose a novel sample-based explanation method for classifiers with a novel derivation of representer point with Taylor Expansion on the Jacobian matrix.

If you would like to cite this work, a sample bibtex citation is as following:

@inproceedings{yi2021representer,
 author = {Yi Sui, Ga Wu, Scott Sanner},
 booktitle = {Advances in Neural Information Processing Systems},
 title = {Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models},
 year = {2021}
}

Set up

To install requirements:

pip install -r requirements.txt

Change the root path in config.py to the path to the project

project_root = #your path here

Download the pre-trained models and calculated weights here

  • Dowload and unzip the saved_models_MODEL_NAME
  • Put the content into the corresponding folders ("models/ MODEL_NAME /saved_models")

Training

In our paper, we run experiment with three tasks

  • CIFAR image classification with ResNet-20 (CNN)
  • IMDB sentiment classification with Bi-LSTM (RNN)
  • German credit analysis with XGBoost (Xgboost)

The models are implemented in the models directory with pre-trained weights under "models/ MODEL_NAME /saved_models/base" : ResNet (CNN), Bi-LSTM (RNN), and XGBoost.

To train theses model(s) in the paper, run the following commands:

python models/CNN/train.py --lr 0.01 --epochs 10 --saved_path saved_models/base
python models/RNN/train.py --lr 1e-3 --epochs 10 --saved_path saved_models/base --use_pretrained True
python models/Xgboost/train.py

Caculate weights

We implemented three different explainers: RPS-LJE, RPS-l2 (modified from official repository of RPS-l2), and Influence Function. To calculate the importance weights, run the following commands:

python explainer/calculate_ours_weights.py --model CNN --lr 0.01
python explainer/calculate_representer_weights.py --model RNN --lmbd 0.003 --epoch 3000
python explainer/calculate_influence.py --model Xgboost

Experiments

Dataset debugging experiment

To run the dataset debugging experiments, run the following commands:

python dataset_debugging/experiment_dataset_debugging_cnn.py --num_of_run 10 --flip_portion 0.2 --path ../models/CNN/saved_models/experiment_dataset_debugging --lr 1e-5
python dataset_debugging/experiment_dataset_debugging_cnn.py --num_of_run 10 --flip_portion 0.2 --path ../models/CNN/saved_models/experiment_dataset_debugging_fix_random_split --lr 1e-5 --seed 11

python dataset_debugging/experiment_dataset_debugging_rnn.py --num_of_run 10 --flip_portion 0.2 --path ../models/RNN/saved_models/experiment_dataset_debugging --lr 1e-5

python dataset_debugging/experiment_dataset_debugging_Xgboost.py --num_of_run 10 --flip_portion 0.3 --path ../models/Xgboost/saved_models/experiment_dataset_debugging --lr 1e-5

The trained models, intermediate outputs, explainer weights, and accuracies at each checkpoint are stored under the specified paths "models/MODEL_NAME/saved_models/experiment_dataset_debugging". To visualize the results, run the notebooks plot_res_cnn.ipynb, plot_res_cnn_fixed_random_split.ipynb, plot_res_rnn.ipynb, plot_res_xgboost.ipynb. The results are saved under folder dataset_debugging/figs.

Other experiments

All remaining experiments are in Jupyter-notebooks organized under "models/ MODEL_NAME /experiments" : ResNet (CNN), Bi-LSTM (RNN), and XGBoost.

A comparison of explanation provided by Influence Function, RPS-l2, and RPS-LJE. Explanation for Image Classification

Owner
Yi(Amy) Sui
Yi(Amy) Sui
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022