Extracting Summary Knowledge Graphs from Long Documents

Overview

GraphSum

This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other baseline TTG is simply based on BertSumExt.

Environment Setup

This code is tested on python 3.6.9, transformer 3.0.2 and pytorch 1.7.0. You would also need numpy and scipy packages.

Data

Download and unzip the data from this link. Put the unzipped folder named as ./data parallel with ./src. You should see four subfolders under ./data/json, corresponding to four data splits as described in the paper.

Under each subfolder, the json file contains all document full texts, abstracts as well as the summarized graphs obtained from the abstract, organized by the document keys. Each full text consists of a list of sections. Each summarized graph contains a list of entity and relation mentions. Except for the test split, other three data splits have their summarized graphs obtained by running DyGIE++ on the abstract. The test set have manually annotated summarized graphs from SciERC dataset. The format of the graph follows the output of DyGIE++, where each entity mention in a section is represented by (start token id, end token id, entity type) and each relation mention is represented by (start token id of entity 1, end token id of entity 1, start token id of entity 2, end token id of entity 2, relation type). The graph also contains a list of coreferential entity mentions.

You should also see two subfolders under the processed folder of each data split: merged_entities and aligned_entities. merged_entities contains the full and summarized graphs for each document, where the graph vertices are cluster of entity mentions. Entity clusters in each summarized graph are coreferential entity mentions predicted by DyGIE++ or annotated (in test set). Entity clusters in each full graph contains entity mentions that are coreferences or share the same non-generic string names (as described in our paper). Under merged_entities, we provide entity clusters and relations between entity clusters, as well as corresponding entity and relation mentions in the full paper or abstract. Each relation is represented by "[entity cluster id 1]_[entity cluster id 2]_[relation type]". The original full graphs with all entity and relation mentions are obtained by running DyGIE++ on the document full text. You don't need them to run the code, but you can find them here. For some entity names, you may see a trailing string "<GENERIC_ID> [number]". It means these entity names are classified by DyGIE++ as "generic" and the trailing string is used to differentiate the same entity name strings in different clusters in such cases.

aligned_entities contains the pre-calculated alignment between entity clusters (see Section 5.1 in the paper) in the summarized and full graphs for each document. In each entity alignment file, under each entity cluster of the summarized graph, there is a list of entity clusters from the full graph if the list is not empty. They are used to facilitate data preprocessing of G2G and evaluation.

Training and Evaluation

The model is based on GAT. Go to ./src and run bash run.sh. You can also find the pretrained model here. Put it under ./src/output and run the inference and evaluation parts in ./src/run.sh.

Owner
Zeqiu (Ellen) Wu
PhD Student at UW NLP Research Group
Zeqiu (Ellen) Wu
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t

EleutherAI 6.7k Dec 28, 2022
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
CorNet Correlation Networks for Extreme Multi-label Text Classification

CorNet Correlation Networks for Extreme Multi-label Text Classification Prerequisites python==3.6.3 pytorch==1.2.0 torchgpipe==0.0.5 click==7.0 ruamel

Guangxu Xun 38 Dec 31, 2022
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

1 Oct 30, 2021
DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

liuhuanyong 357 Dec 24, 2022
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022
The simple project to separate mixed voice (2 clean voices) to 2 separate voices.

Speech Separation The simple project to separate mixed voice (2 clean voices) to 2 separate voices. Result Example (Clisk to hear the voices): mix ||

vuthede 31 Oct 30, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022