End-to-end machine learning project for rices detection

Overview

Basmatinet

Welcome to this project folks !

Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learning and MLOPS. So if you want to learn to train and deploy a simple model to recognize rice type basing on a photo, then you are at the right place.

0- Project's Roadmap

This project will consist to:

  • Train a Deep Learning model with Pytorch.
  • Transfert learning from Efficient Net.
  • Data augmentation with Albumentation.
  • Save trained model with early stopping.
  • Track the training with MLFLOW.
  • Serve the model with a Rest Api built with Flask.
  • Encode data in base64 client side before sending to the api server.
  • Package the application in microservice's fashion with Docker.
  • Yaml for configurations file.
  • Passing arguments anywhere it is possible.
  • Orchestrate the prediction service with Kubernetes (k8s) on Google Cloud Platform.
  • Pre-commit git hook.
  • Logging during training.
  • CI with github actions.
  • CD with terraform to build environment on Google Cloud Platform.
  • Save images and predictions in InfluxDB database.
  • Create K8s service endpoint for external InfluxDB database.
  • Create K8s secret for external InfluxDB database.
  • Unitary tests with Pytest (Fixtures and Mocks).

1- Install project's dependencies and packages

This project was developped in conda environment but you can use any python virtual environment but you should have installed some packages that are in basmatinet/requirements.txt

Python version: 3.8.12

# Move into the project root
$ cd basmatinet

# 1st alternative: using pip
$ pip install -r requirements.txt
# 2nd alternative
$ conda install --file requirements.txt

2- Train a basmatinet model

$ python src/train.py "/path/to/rice_image_dataset/" \
                     --batch-size 16 --nb-epochs 200 \
                     --workers 8 --early-stopping 5  \
                     --percentage 0.1 --cuda

3- Dockerize the model and push the Docker Image to Google Container Registry

1st step: Let's build a docker images

# Move into the app directory
$ cd basmatinet/app

# Build the machine learning serving app image
$ docker build -t basmatinet .

# Run a model serving app container outside of kubernetes (optionnal)
$ docker run -d -p 5000:5000 basmatinet

# Try an inference to test the endpoint
$ python frontend.py --filename "../images/arborio.jpg" --host-ip "0.0.0.0"

2nd step: Let's push the docker image into a Google Container Registry. But you should create a google cloud project to have PROJECT-ID and in this case you HOSTNAME will be "gcr.io" and you should enable GCR Api on google cloud platform.

# Re-tag the image and include the container in the image tag
$ docker tag basmatinet [HOSTNAME]/[PROJECT-ID]/basmatinet

# Push to container registry
$ docker push [HOSTNAME]/[PROJECT-ID]/basmatinet

4- Create a kubernetes cluster

First of all you should enable GKE Api on google cloud platform. And go to the cloud shell or stay on your host if you have gcloud binary already installed.

# Start a cluster
$ gcloud container clusters create k8s-gke-cluster --num-nodes 3 --machine-type g1-small --zone europe-west1-b

# Connect to the cluster
$ gcloud container clusters get-credentials k8s-gke-cluster --zone us-west1-b --project [PROJECT_ID]

4- Deploy the application on Kubernetes (Google Kubernetes Engine)

Create the deployement and the service on a kubernetes cluster.

# In the app directory
$ cd basmatinet/app
# Create the namespace
$ kubectl apply -f k8s/namespace.yaml
# Create the deployment
$ kubectl apply -f k8s/basmatinet-deployment.yaml --namespace=mlops-test
# Create the service
$ kubectl apply -f k8s/basmatinet-service.yaml --namespace=mlops-test

# Check that everything is alright with the following command and look for basmatinet-app in the output
$ kubectl get services

# The output should look like
NAME             TYPE           CLUSTER-IP    EXTERNAL-IP     PORT(S)          AGE
basmatinet-app   LoadBalancer   xx.xx.xx.xx   xx.xx.xx.xx   5000:xxxx/TCP      2m3s

Take the EXTERNAL-IP and test your service with the file basmatinet/app/frontend.py . Then you can cook your jollof with some basmatinet!!!

You might also like...
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

 Neural Dynamic Policies for End-to-End Sensorimotor Learning
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

 WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

Releases(v0.2.0)
  • v0.2.0(May 26, 2022)

    We add image building annd pushing to Google Container Registry. Moreover we add a last step to deploy on a Google Kubernetes Engine cluster. And this the first official release.

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(May 24, 2022)

Owner
Béranger
Machine Learning Engineer with high interest for Africa.
Béranger
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022