This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Overview

Omnimatte in PyTorch

This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Prerequisites

  • Linux
  • Python 3.6+
  • NVIDIA GPU + CUDA CuDNN

Installation

This code has been tested with PyTorch 1.8 and Python 3.8.

  • Install PyTorch 1.8 and other dependencies.
    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

Demo

To train a model on a video (e.g. "tennis"), run:

python train.py --name tennis --dataroot ./datasets/tennis --gpu_ids 0,1

To view training results and loss plots, visit the URL http://localhost:8097. Intermediate results are also at ./checkpoints/tennis/web/index.html.

To save the omnimatte layer outputs of the trained model, run:

python test.py --name tennis --dataroot ./datasets/tennis --gpu_ids 0

The results (RGBA layers, videos) will be saved to ./results/tennis/test_latest/.

Custom video

To train on your own video, you will have to preprocess the data:

  1. Extract the frames, e.g.
    mkdir ./datasets/my_video && cd ./datasets/my_video 
    mkdir rgb && ffmpeg -i video.mp4 rgb/%04d.png
    
  2. Resize the video to 256x448 and save the frames in my_video/rgb.
  3. Get input object masks (e.g. using Mask-RCNN and STM), save each object's masks in its own subdirectory, e.g. my_video/mask/01/, my_video/mask/02/, etc.
  4. Compute flow (e.g. using RAFT), and save the forward .flo files to my_video/flow and backward flow to my_video/flow_backward
  5. Compute the confidence maps from the forward/backward flows:
    python datasets/confidence.py --dataroot ./datasets/tennis
  6. Register the video and save the computed homographies in my_video/homographies.txt. See here for details.

Note: Videos that are suitable for our method have the following attributes:

  • Static camera or limited camera motion that can be represented with a homography.
  • Limited number of omnimatte layers, due to GPU memory limitations. We tested up to 6 layers.
  • Objects that move relative to the background (static objects will be absorbed into the background layer).
  • We tested a video length of up to 200 frames (~7 seconds).

Citation

If you use this code for your research, please cite the following paper:

@inproceedings{lu2021,
  title={Omnimatte: Associating Objects and Their Effects in Video},
  author={Lu, Erika and Cole, Forrester and Dekel, Tali and Zisserman, Andrew and Freeman, William T and Rubinstein, Michael},
  booktitle={CVPR},
  year={2021}
}

Acknowledgments

This code is based on retiming and pytorch-CycleGAN-and-pix2pix.

Owner
Erika Lu
Erika Lu
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022