Keras implementations of Generative Adversarial Networks.

Overview

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as a collaborator send me an email at [email protected].

Keras-GAN

Collection of Keras implementations of Generative Adversarial Networks (GANs) suggested in research papers. These models are in some cases simplified versions of the ones ultimately described in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GAN varieties to implement are very welcomed.

See also: PyTorch-GAN

Table of Contents

Installation

$ git clone https://github.com/eriklindernoren/Keras-GAN
$ cd Keras-GAN/
$ sudo pip3 install -r requirements.txt

Implementations

AC-GAN

Implementation of Auxiliary Classifier Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1610.09585

Example

$ cd acgan/
$ python3 acgan.py

Adversarial Autoencoder

Implementation of Adversarial Autoencoder.

Code

Paper: https://arxiv.org/abs/1511.05644

Example

$ cd aae/
$ python3 aae.py

BiGAN

Implementation of Bidirectional Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1605.09782

Example

$ cd bigan/
$ python3 bigan.py

BGAN

Implementation of Boundary-Seeking Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1702.08431

Example

$ cd bgan/
$ python3 bgan.py

CC-GAN

Implementation of Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.06430

Example

$ cd ccgan/
$ python3 ccgan.py

CGAN

Implementation of Conditional Generative Adversarial Nets.

Code

Paper:https://arxiv.org/abs/1411.1784

Example

$ cd cgan/
$ python3 cgan.py

Context Encoder

Implementation of Context Encoders: Feature Learning by Inpainting.

Code

Paper: https://arxiv.org/abs/1604.07379

Example

$ cd context_encoder/
$ python3 context_encoder.py

CoGAN

Implementation of Coupled generative adversarial networks.

Code

Paper: https://arxiv.org/abs/1606.07536

Example

$ cd cogan/
$ python3 cogan.py

CycleGAN

Implementation of Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1703.10593

Example

$ cd cyclegan/
$ bash download_dataset.sh apple2orange
$ python3 cyclegan.py

DCGAN

Implementation of Deep Convolutional Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1511.06434

Example

$ cd dcgan/
$ python3 dcgan.py

DiscoGAN

Implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1703.05192

Example

$ cd discogan/
$ bash download_dataset.sh edges2shoes
$ python3 discogan.py

DualGAN

Implementation of DualGAN: Unsupervised Dual Learning for Image-to-Image Translation.

Code

Paper: https://arxiv.org/abs/1704.02510

Example

$ cd dualgan/
$ python3 dualgan.py

GAN

Implementation of Generative Adversarial Network with a MLP generator and discriminator.

Code

Paper: https://arxiv.org/abs/1406.2661

Example

$ cd gan/
$ python3 gan.py

InfoGAN

Implementation of InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.

Code

Paper: https://arxiv.org/abs/1606.03657

Example

$ cd infogan/
$ python3 infogan.py

LSGAN

Implementation of Least Squares Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.04076

Example

$ cd lsgan/
$ python3 lsgan.py

Pix2Pix

Implementation of Image-to-Image Translation with Conditional Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.07004

Example

$ cd pix2pix/
$ bash download_dataset.sh facades
$ python3 pix2pix.py

PixelDA

Implementation of Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1612.05424

MNIST to MNIST-M Classification

Trains a classifier on MNIST images that are translated to resemble MNIST-M (by performing unsupervised image-to-image domain adaptation). This model is compared to the naive solution of training a classifier on MNIST and evaluating it on MNIST-M. The naive model manages a 55% classification accuracy on MNIST-M while the one trained during domain adaptation gets a 95% classification accuracy.

$ cd pixelda/
$ python3 pixelda.py
Method Accuracy
Naive 55%
PixelDA 95%

SGAN

Implementation of Semi-Supervised Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1606.01583

Example

$ cd sgan/
$ python3 sgan.py

SRGAN

Implementation of Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1609.04802

Example

$ cd srgan/
<follow steps at the top of srgan.py>
$ python3 srgan.py

WGAN

Implementation of Wasserstein GAN (with DCGAN generator and discriminator).

Code

Paper: https://arxiv.org/abs/1701.07875

Example

$ cd wgan/
$ python3 wgan.py

WGAN GP

Implementation of Improved Training of Wasserstein GANs.

Code

Paper: https://arxiv.org/abs/1704.00028

Example

$ cd wgan_gp/
$ python3 wgan_gp.py

Owner
Erik Linder-Norén
ML engineer at Apple. Excited about machine learning, basketball and building things.
Erik Linder-Norén
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022