PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

Overview

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations


Project | Paper | Colab

PyTorch implementation of SDEdit: Image Synthesis and Editing with Stochastic Differential Equations.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon

Stanford and CMU

Overview

The key intuition of SDEdit is to "hijack" the reverse stochastic process of SDE-based generative models, as illustrated in the figure below. Given an input image for editing, such as a stroke painting or an image with color strokes, we can add a suitable amount of noise to make its artifacts undetectable, while still preserving the overall structure of the image. We then initialize the reverse SDE with this noisy input, and simulate the reverse process to obtain a denoised image of high quality. The final output is realistic while resembling the overall image structure of the input.

Getting Started

The code will automatically download pretrained SDE (VP) PyTorch models on CelebA-HQ, LSUN bedroom, and LSUN church outdoor.

Data format

We save the image and the corresponding mask in an array format [image, mask], where "image" is the image with range [0,1] in the PyTorch tensor format, "mask" is the corresponding binary mask (also the PyTorch tensor format) specifying the editing region. We provide a few examples, and functions/process_data.py will automatically download the examples to the colab_demo folder.

Stroke-based image generation

Given an input stroke painting, our goal is to generate a realistic image that shares the same structure as the input painting. SDEdit can synthesize multiple diverse outputs for each input on LSUN bedroom, LSUN church and CelebA-HQ datasets.

To generate results on LSUN datasets, please run

python main.py --exp ./runs/ --config bedroom.yml --sample -i images --npy_name lsun_bedroom1 --sample_step 3 --t 500  --ni
python main.py --exp ./runs/ --config church.yml --sample -i images --npy_name lsun_church --sample_step 3 --t 500  --ni

Stroke-based image editing

Given an input image with user strokes, we want to manipulate a natural input image based on the user's edit. SDEdit can generate image edits that are both realistic and faithful (to the user edit), while avoid introducing undesired changes.

To perform stroke-based image editing, run
python main.py --exp ./runs/  --config church.yml --sample -i images --npy_name lsun_edit --sample_step 3 --t 500  --ni

Additional results

References

If you find this repository useful for your research, please cite the following work.

@article{meng2021sdedit,
      title={SDEdit: Image Synthesis and Editing with Stochastic Differential Equations},
      author={Chenlin Meng and Yang Song and Jiaming Song and Jiajun Wu and Jun-Yan Zhu and Stefano Ermon},
      year={2021},
      journal={arXiv preprint arXiv:2108.01073},
}

This implementation is based on / inspired by:

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022