Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Overview

Incidents Dataset

See the following pages for more details:

  • Project page: IncidentsDataset.csail.mit.edu.
  • ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild" here.
  • Extended Paper "Incidents1M: a large-scale dataset of images with natural disasters, damage, and incidents" here.

Obtain the data

Please fill out this form and then email/notify [email protected] to request the data.

The data structure is in JSON with URLs and labels. The files are in the following form:

# single-label multi-class (ECCV 2020 version):
eccv_train.json
eccv_val.json

# multi-label multi-class (latest version):
multi_label_train.json
multi_label_val.json
  1. Download chosen JSON files and move to the data folder.

  2. Look at VisualizeDataset.ipynb to see the composition of the dataset files.

  3. Download the images at the URLs specified in the JSON files.

  4. Take note of image download location. This is param --images_path in parser.py.

Setup environment

git clone https://github.com/ethanweber/IncidentsDataset
cd IncidentsDataset

conda create -n incidents python=3.8.2
conda activate incidents
pip install -r requirements.txt

Using the Incident Model

  1. Download pretrained weights here. Place desired files in the pretrained_weights folder. Note that these take the following structure:

    # run this script to download everything
    python run_download_weights.py
    
    # pretrained weights with Places 365
    resnet18_places365.pth.tar
    resnet50_places365.pth.tar
    
    # ECCV baseline model weights
    eccv_baseline_model_trunk.pth.tar
    eccv_baseline_model_incident.pth.tar
    eccv_baseline_model_place.pth.tar
    
    # ECCV final model weights
    eccv_final_model_trunk.pth.tar
    eccv_final_model_incident.pth.tar
    eccv_final_model_place.pth.tar
    
    # multi-label final model weights
    multi_label_final_model_trunk.pth.tar
    multi_label_final_model_incident.pth.tar
    multi_label_final_model_place.pth.tar
    
  2. Run inference with the model with RunModel.ipynb.

  3. Compute mAP and report numbers.

    # test the model on the validation set
    python run_model.py \
        --config=configs/eccv_final_model \
        --mode=val \
        --checkpoint_path=pretrained_weights \
        --images_path=/path/to/downloaded/images/folder/
    
  4. Train a model.

    # train the model
    python run_model.py \
        --config=configs/eccv_final_model \
        --mode=train \
        --checkpoint_path=runs/eccv_final_model
    
    # visualize tensorboard
    tensorboard --samples_per_plugin scalars=100,images=10 --port 8880 --bind_all --logdir runs/eccv_final_model
    

    See the configs/ folder for more details.

Citation

If you find this work helpful for your research, please consider citing our paper:

@InProceedings{weber2020eccv,
  title={Detecting natural disasters, damage, and incidents in the wild},
  author={Weber, Ethan and Marzo, Nuria and Papadopoulos, Dim P. and Biswas, Aritro and Lapedriza, Agata and Ofli, Ferda and Imran, Muhammad and Torralba, Antonio},
  booktitle={The European Conference on Computer Vision (ECCV)},
  month = {August},
  year={2020}
}

License

This work is licensed with the MIT License. See LICENSE for details.

Acknowledgements

This work is supported by the CSAIL-QCRI collaboration project and RTI2018-095232-B-C22 grant from the Spanish Ministry of Science, Innovation and Universities.

Owner
Ethan Weber
Currently PhD student at Berkeley. Previously EECS at MIT BS '20 & MEng '21.
Ethan Weber
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021