Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Overview

Face Detect MQTT

Face or Pose detector that emits MQTT events when a face or human body is detected and not detected.

I built this as an alternative to using PIR motion sensors to turn on the lights in my office. I found that when sitting at my computer (somewhat motionless), the PIR motion sensors stop detecting motion and turn off the lights while I am still in the room.

Instead of using motion sensors, this project is constantly monitoring a camera (attached to a raspberry pi) and looking to see if a face is present on the camera - if a face is present, the lights stay on.

My raspberry pi + camera are placed on my desk under my computer monitors. When I walk into the room and sit down at my computer my face is detected - and continue to be detected while I sit at the computer.

Lights On

Lights Off

Detection Modes

Use the DETECTION_METHOD environment variable to set which detection mode (face or pose).

Face only detects your face.

Pose detects full body poses (and seems to work fine when your body is obstructed behind a desk).

MQTT Events

Note: the mqtt client id is customisable via environment variables. The default cvzone_tracker_01 is used in the examples below

Face/Pose Detected

A face or pose has been detected

MQTT Topic: home/cvzone_tracker_01/detected
Payload: 1

Face/Pose Not Detected

A face or pose is no longer detected (a face or pose must be detected first)

MQTT Topic: home/cvzone_tracker_01/detected
Payload: 0

Connected

MQTT client has connected

MQTT Topic: home/cvzone_tracker_01/status
Payload: connected

Disconnected

MQTT client has disconnected (sent as MQTT last will message)

MQTT Topic: home/cvzone_tracker_01/status
Payload: disconnected

Raspberry Pi Pre-requisites (using the RPi Camera Module)

Required: Raspberry Pi OS 64-bit

Set the following options in raspi-config and reboot:

  • GPU Memory -> 256
  • Legacy Camera Stack -> Enabled

Install docker:

curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker pi
sudo systemctl enable docker
sudo reboot

Run with docker

docker run \
  -d \
  --restart=unless-stopped \
  --device /dev/video0 \
  -e MQTT_ADDRESS="10.1.1.100" \
  -e MQTT_PORT="1883" \
  -e MQTT_CLIENT_ID="cvzone_tracker_01" \
  -e DETECTION_METHOD="face" \
  -e MIN_FACE_SCORE="0.5" \
  -e ROTATE_IMAGE="0" \
  --name=face-detect-mqtt \ 
  selexin/face-detect-mqtt:latest

Environment Variables

  • MQTT_ADDRESS - IP Address of MQTT broker on local network
  • MQTT_PORT - Port of MQTT broker on local network
  • MQTT_CLIENT_ID - Custom MQTT client ID to use
  • DETECTION_METHOD - Either face or pose. Face only detects faces. Pose detects full body poses.
  • MIN_FACE_SCORE - Number between 0.0 and 1.0. Ignore face detections with a confidence lower than this number (only used when DETECTION_METHOD = face).
  • ROTATE_IMAGE - Set to "1" to if your camera is upside-down

Manually install and run

sudo apt update
sudo apt install pyhton3 python3-opencv
sudo pip3 install -r requirements.txt

python3 src/main.py

License

MIT - see LICENSE.md

Owner
Jacob Morris
Freelance Software Engineer
Jacob Morris
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022