Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Related tags

Deep LearningDetic
Overview

Detecting Twenty-thousand Classes using Image-level Supervision

Detic: A Detector with image classes that can use image-level labels to easily train detectors.

Detecting Twenty-thousand Classes using Image-level Supervision,
Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, Ishan Misra,
arXiv technical report (arXiv 2201.02605)

Features

  • Detects any class given class names (using CLIP).

  • We train the detector on ImageNet-21K dataset with 21K classes.

  • Cross-dataset generalization to OpenImages and Objects365 without finetuning.

  • State-of-the-art results on Open-vocabulary LVIS and Open-vocabulary COCO.

  • Works for DETR-style detectors.

Installation

See installation instructions.

Demo

Integrated into Huggingface Spaces 🤗 using Gradio. Try out the web demo: Hugging Face Spaces

Run our demo using Colab (no GPU needed): Open In Colab

We use the default detectron2 demo interface. For example, to run our 21K model on a messy desk image (image credit David Fouhey) with the lvis vocabulary, run

mkdir models
wget https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth -O models/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth
wget https://web.eecs.umich.edu/~fouhey/fun/desk/desk.jpg
python demo.py --config-file configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml --input desk.jpg --output out.jpg --vocabulary lvis --opts MODEL.WEIGHTS models/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth

If setup correctly, the output should look like:

The same model can run with other vocabularies (COCO, OpenImages, or Objects365), or a custom vocabulary. For example:

python demo.py --config-file configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml --input desk.jpg --output out2.jpg --vocabulary custom --custom_vocabulary headphone,webcam,paper,coffe --confidence-threshold 0.3 --opts MODEL.WEIGHTS models/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth

The output should look like:

Note that headphone, paper and coffe (typo intended) are not LVIS classes. Despite the misspelled class name, our detector can produce a reasonable detection for coffe.

Benchmark evaluation and training

Please first prepare datasets, then check our MODEL ZOO to reproduce results in our paper. We highlight key results below:

  • Open-vocabulary LVIS

    mask mAP mask mAP_novel
    Box-Supervised 30.2 16.4
    Detic 32.4 24.9
  • Standard LVIS

    Detector/ Backbone mask mAP mask mAP_rare
    Box-Supervised CenterNet2-ResNet50 31.5 25.6
    Detic CenterNet2-ResNet50 33.2 29.7
    Box-Supervised CenterNet2-SwinB 40.7 35.9
    Detic CenterNet2-SwinB 41.7 41.7
    Detector/ Backbone box mAP box mAP_rare
    Box-Supervised DeformableDETR-ResNet50 31.7 21.4
    Detic DeformableDETR-ResNet50 32.5 26.2
  • Cross-dataset generalization

    Backbone Objects365 box mAP OpenImages box mAP50
    Box-Supervised SwinB 19.1 46.2
    Detic SwinB 21.4 55.2

License

The majority of Detic is licensed under the Apache 2.0 license, however portions of the project are available under separate license terms: SWIN-Transformer, CLIP, and TensorFlow Object Detection API are licensed under the MIT license; UniDet is licensed under the Apache 2.0 license; and the LVIS API is licensed under a custom license (https://github.com/lvis-dataset/lvis-api/blob/master/LICENSE)” If you later add other third party code, please keep this license info updated, and please let us know if that component is licensed under something other than CC-BY-NC, MIT, or CC0

Ethical Considerations

Detic's wide range of detection capabilities may introduce similar challenges to many other visual recognition and open-set recognition methods. As the user can define arbitrary detection classes, class design and semantics may impact the model output.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2021detecting,
  title={Detecting Twenty-thousand Classes using Image-level Supervision},
  author={Zhou, Xingyi and Girdhar, Rohit and Joulin, Armand and Kr{\"a}henb{\"u}hl, Philipp and Misra, Ishan},
  booktitle={arXiv preprint arXiv:2201.02605},
  year={2021}
}
Owner
Meta Research
Meta Research
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022