FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Related tags

Deep LearningFLSim
Overview

Federated Learning Simulator (FLSim)

Federated Learning Simulator (FLSim) is a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such as computer vision and natural text. Currently FLSim supports cross-device FL, where millions of clients' devices (e.g. phones) traing a model collaboratively together.

FLSim is scalable and fast. It supports differential privacy (DP), secure aggregation (secAgg), and variety of compression techniques.

In FL, a model is trained collaboratively by multiple clients that each have their own local data, and a central server moderates training, e.g. by aggregating model updates from multiple clients.

In FLSim, developers only need to define a dataset, model, and metrics reporter. All other aspects of FL training are handled internally by the FLSim core library.

FLSim

Library Structure

FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregate aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client composes of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

Installation

The latest release of FLSim can be installed via pip:

pip install flsim

You can also install directly from the source for the latest features (along with its quirks and potentially ocassional bugs):

git clone https://github.com/facebookresearch/FLSim.git
cd FLSim
pip install -e .

Getting started

To implement a central training loop in the FL setting using FLSim, a developer simply performs the following steps:

  1. Build their own data pipeline to assign individual rows of training data to client devices (to simulate data is distributed across client devices)
  2. Create a corresponding nn/Module model and wrap it in an FL model.
  3. Define a custom metrics reporter that computes and collects metrics of interest (e.g., accuracy) throughout training.
  4. Set the desired hyperparameters in a config.

Usage Example

Tutorials

To see the details, please refer to the tutorials that we have prepared.

Examples

We have prepared the runnable exampels for 2 of the tutorials above:

Contributing

See the CONTRIBUTING for how to contribute to this library.

License

This code is released under Apache 2.0, as found in the LICENSE file.

Comments
  • Bug Fix#36: fix imports in tests.

    Bug Fix#36: fix imports in tests.

    Types of changes

    • [x ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Docs change / refactoring / dependency upgrade

    Motivation and Context / Related issue

    Bug Fix#36: fix imports in tests.

    How Has This Been Tested (if it applies)

    pytest -ra is able to discover all tests now.

    Checklist

    • [x] The documentation is up-to-date with the changes I made.
    • [x] I have read the CONTRIBUTING document and completed the CLA (see CONTRIBUTING).
    • [x ] All tests passed, and additional code has been covered with new tests.
    CLA Signed 
    opened by ghaccount 8
  • Vr

    Vr

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Docs change / refactoring / dependency upgrade

    Motivation and Context / Related issue

    How Has This Been Tested (if it applies)

    Checklist

    • [ ] The documentation is up-to-date with the changes I made.
    • [ ] I have read the CONTRIBUTING document and completed the CLA (see CONTRIBUTING).
    • [ ] All tests passed, and additional code has been covered with new tests.
    CLA Signed 
    opened by JohnlNguyen 6
  • Move optimizer_test_utils to optimizers directory

    Move optimizer_test_utils to optimizers directory

    Summary: it is currently located at the top-level tests directory. However the top-level tests directory does not really make sense as each component is organized into its dedicated directory. optimizer_test_utils.py belongs to the optimizer directory in that sense. In this diff, we move the file to the optimizer directory and fixes the reference.

    Differential Revision: D32241821

    CLA Signed fb-exported Merged 
    opened by jessemin 3
  • Does the backend handle Federated learning asynchronously?

    Does the backend handle Federated learning asynchronously?

    I found this repo from this blog: - https://ai.facebook.com/blog/asynchronous-federated-learning/ However I do not find any mentioning on this repo and also I cannot decipher from the code examples whether this is synchronous version or asynchronous version of Federated learning? Can you please clarify this for me? And also if this is the asynchronous version how can I dive deeper in to the libraries and look at the code of implementation for the asynch handling mechanism?

    Thank you

    opened by 111Kaushal 2
  • Remove test_pytorch_local_dataset_factory

    Remove test_pytorch_local_dataset_factory

    Summary: This test had been very flaky about 1+ year ago an d never been revived since then. Deleting it from the codebase.

    Differential Revision: D32415979

    CLA Signed fb-exported Merged 
    opened by jessemin 2
  • FedSGD with virtual batching

    FedSGD with virtual batching

    🚀 Feature

    Motivation

    Create a memory efficient client to run FedSGD. If a client has many examples, running FedSGD (taking the gradient of the model based on all of the client's data) can lead to OOM. In this PR, we fix this problem by still calling optimizer.step once at the end of local training to simulate the effect of FedSGD.>

    opened by JohnlNguyen 0
  • Add Fednova as a benchmark

    Add Fednova as a benchmark

    Summary:

    What?

    Adding FedNova as a benchmark

    Why?

    FedNova is a well known paper that fixes the objective inconsistency problem

    Differential Revision: D34668291

    CLA Signed fb-exported 
    opened by JohnlNguyen 1
  • Having to `import flsim.configs`  before creating config from json is unintuitive

    Having to `import flsim.configs` before creating config from json is unintuitive

    🚀 Feature

    This code works

    import flsim.configs <-- 
    from flsim.utils.config_utils import fl_config_from_json
    
    json_config = {
        "trainer": {
        }
    }
    cfg = fl_config_from_json(json_config)
    

    This code doesn't work

    from flsim.utils.config_utils import fl_config_from_json
    
    json_config = {
        "trainer": {
        }
    }
    cfg = fl_config_from_json(json_config)
    

    Motivation

    Having to import flsim.configs is unintuitive and not clear from the user perspective

    Pitch

    Alternatives

    Additional context

    opened by JohnlNguyen 0
  • Fix sent140 example

    Fix sent140 example

    Summary:

    What?

    Fix tutorial to word embedding to resolve the poor accuracy problem

    Why?

    https://github.com/facebookresearch/FLSim/issues/34

    Differential Revision: D34149392

    CLA Signed fb-exported 
    opened by JohnlNguyen 1
  • low test accuracy in Sentiment classification with LEAF's Sent140 tutorial?

    low test accuracy in Sentiment classification with LEAF's Sent140 tutorial?

    ❓ Questions and Help

    Until we move the questions to another medium, feel free to use this as your question:

    Question

    I tried this tutorial https://github.com/facebookresearch/FLSim/blob/main/tutorials/sent140_tutorial.ipynb And accuracy is less that random guess (50%)!

    Any suggestions or approaches to improve accuracy for this tutorial?

    from tutorial: Running (epoch = 1, round = 1, global round = 1) for Test (epoch = 1, round = 1, global round = 1), Loss/Test: 0.8683878255035598 (epoch = 1, round = 1, global round = 1), Accuracy/Test: 49.61439588688946 {'Accuracy': 49.61439588688946}

    opened by ghaccount 0
Releases(v0.1.0)
  • v0.0.1(Dec 9, 2021)

    We are excited to announce the release of FLSim 0.0.1.

    Introduction

    How does one train a machine learning model without access to user data? Federated Learning (FL) is the technology that answers this question. In a nutshell, FL is a way for many users to learn a machine learning model without sharing data collaboratively. The two scenarios for FL, cross-silo and cross-device. Cross-silo provides technologies for collaborative learning between a few large organizations with massive silo datasets. Cross-device provides collaborative learning between many small user devices with small local datasets. Cross-device FL, where millions or even billions of users cooperate on learning a model, is a much more complex problem and attracted less attention from the research community. We designed FLSim to address the cross-device FL use case.

    Federated Learning at Scale

    Large-scale cross-device Federated Learning (FL) is a federated learning paradigm with several challenges that differentiate it from cross-silo FL: millions of clients coordinating with a central server and training instability due to the significant cohort problem. With these challenges in mind, we built FLSim to be scalable while easy to use, and FLSim can scale to thousands of clients per round using only 1 GPU. We hope FLSim will equip researchers to tackle problems with federated learning at scale.

    FLSim

    Library Structure

    FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregate aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client composes of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

    Included Datasets

    Currently, FLSim supports all datasets from LEAF including FEMNIST, Shakespeare, Sent140, CelebA, Synthetic and Reddit. Additionally, we support MNIST and CIFAR-10.

    Included Algorithms

    FLSim supports standard FedAvg, and other federated learning methods such as FedAdam, FedProx, FedAvgM, FedBuff, FedLARS, and FedLAMB.

    What’s next?

    We hope FLSim will foster large-scale cross-device FL research. Soon, we plan to add support for personalization in early 2022. Throughout 2022, we plan to gather feedback and improve usability. We plan to continue to grow our collection of algorithms, datasets, and models.

    Source code(tar.gz)
    Source code(zip)
Owner
Meta Research
Meta Research
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022