Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

Related tags

Deep LearningFiD
Overview

This repository contains code for:

  • Fusion-in-Decoder models
  • Distilling Knowledge from Reader to Retriever

Dependencies

  • Python 3
  • PyTorch (currently tested on version 1.6.0)
  • Transformers (version 3.0.2, unlikely to work with a different version)
  • NumPy

Data

Download data

NaturalQuestions and TriviaQA data can be downloaded using get-data.sh. Both datasets are obtained from the original source and the wikipedia dump is downloaded from the DPR repository. In addition to the question and answers, this script retrieves the Wikipedia passages used to trained the released pretrained models.

Data format

The expected data format is a list of entry examples, where each entry example is a dictionary containing

  • id: example id, optional
  • question: question text
  • target: answer used for model training, if not given, the target is randomly sampled from the 'answers' list
  • answers: list of answer text for evaluation, also used for training if target is not given
  • ctxs: a list of passages where each item is a dictionary containing - title: article title - text: passage text

Entry example:

{
  'id': '0',
  'question': 'What element did Marie Curie name after her native land?',
  'target': 'Polonium',
  'answers': ['Polonium', 'Po (chemical element)', 'Po'],
  'ctxs': [
            {
                "title": "Marie Curie",
                "text": "them on visits to Poland. She named the first chemical element that she discovered in 1898 \"polonium\", after her native country. Marie Curie died in 1934, aged 66, at a sanatorium in Sancellemoz (Haute-Savoie), France, of aplastic anemia from exposure to radiation in the course of her scientific research and in the course of her radiological work at field hospitals during World War I. Maria Sk\u0142odowska was born in Warsaw, in Congress Poland in the Russian Empire, on 7 November 1867, the fifth and youngest child of well-known teachers Bronis\u0142awa, \"n\u00e9e\" Boguska, and W\u0142adys\u0142aw Sk\u0142odowski. The elder siblings of Maria"
            },
            {
                "title": "Marie Curie",
                "text": "was present in such minute quantities that they would eventually have to process tons of the ore. In July 1898, Curie and her husband published a joint paper announcing the existence of an element which they named \"polonium\", in honour of her native Poland, which would for another twenty years remain partitioned among three empires (Russian, Austrian, and Prussian). On 26 December 1898, the Curies announced the existence of a second element, which they named \"radium\", from the Latin word for \"ray\". In the course of their research, they also coined the word \"radioactivity\". To prove their discoveries beyond any"
            }
          ]
}

Pretrained models.

Pretrained models can be downloaded using get-model.sh. Currently availble models are [nq_reader_base, nq_reader_large, nq_retriever, tqa_reader_base, tqa_reader_large, tqa_retriever].

bash get-model.sh -m model_name

Performance of the pretrained models:

Mode size NaturalQuestions TriviaQA
dev test dev test
base 49.2 50.1 68.7 69.3
large 52.7 54.4 72.5 72.5

I. Fusion-in-Decoder

Fusion-in-Decoder models can be trained using train_reader.py and evaluated with test_reader.py.

Train

train_reader.py provides the code to train a model. An example usage of the script is given below:

python train_reader.py \
        --train_data train_data.json \
        --eval_data eval_data.json \
        --model_size base \
        --per_gpu_batch_size 1 \
        --n_context 100 \
        --name my_experiment \
        --checkpoint_dir checkpoint \

Training these models with 100 passages is memory intensive. To alleviate this issue we use checkpointing with the --use_checkpoint option. Tensors of variable sizes lead to memory overhead. Encoder input tensors have a fixed size by default, but not the decoder input tensors. The tensor size on the decoder side can be fixed using --answer_maxlength. The large readers have been trained on 64 GPUs with the following hyperparameters:

python train_reader.py \
        --use_checkpoint \
        --lr 0.00005 \
        --optim adamw \
        --scheduler linear \
        --weight_decay 0.01 \
        --text_maxlength 250 \
        --per_gpu_batch_size 1 \
        --n_context 100 \
        --total_step 15000 \
        --warmup_step 1000 \

Test

You can evaluate your model or a pretrained model with test_reader.py. An example usage of the script is provided below.

python test_reader.py \
        --model_path checkpoint_dir/my_experiment/my_model_dir/checkpoint/best_dev \
        --eval_data eval_data.json \
        --per_gpu_batch_size 1 \
        --n_context 100 \
        --name my_test \
        --checkpoint_dir checkpoint \

II. Distilling knowledge from reader to retriever for question answering

This repository also contains code to train a retriever model following the method proposed in our paper: Distilling knowledge from reader to retriever for question answering. This code is heavily inspired by the DPR codebase and reuses parts of it. The proposed method consists in several steps:

1. Obtain reader cross-attention scores

Assuming that we have already retrieved relevant passages for each question, the first step consists in generating cross-attention scores. This can be done using the option --write_crossattention_scores in test.py. It saves the dataset with cross-attention scores in checkpoint_dir/name/dataset_wscores.json. To retrieve the initial set of passages for each question, different options can be considered, such as DPR or BM25.

python test.py \
        --model_path my_model_path \
        --eval_data data.json \
        --per_gpu_batch_size 4 \
        --n_context 100 \
        --name my_test \
        --checkpoint_dir checkpoint \
        --write_crossattention_scores \

2. Retriever training

train_retriever.py provides the code to train a retriever using the scores previously generated.

python train_retriever.py \
        --lr 1e-4 \
        --optim adamw \
        --scheduler linear \
        --train_data train_data.json \
        --eval_data eval_data.json \
        --n_context 100 \
        --total_steps 20000 \
        --scheduler_steps 30000 \

3. Knowldege source indexing

Then the trained retriever is used to index a knowldege source, Wikipedia in our case.

python3 generate_retriever_embedding.py \
        --model_path <model_dir> \ #directory
        --passages passages.tsv \ #.tsv file
        --output_path wikipedia_embeddings \
        --shard_id 0 \
        --num_shards 1 \
        --per_gpu_batch_size 500 \

4. Passage retrieval

After indexing, given an input query, passages can be efficiently retrieved:

python passage_retrieval.py \
    --model_path <model_dir> \
    --passages psgs_w100.tsv \
    --data_path data.json \
    --passages_embeddings "wikipedia_embeddings/wiki_*" \
    --output_path retrieved_data.json \
    --n-docs 100 \

We found that iterating the four steps here can improve performances, depending on the initial set of documents.

References

[1] G. Izacard, E. Grave Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering

@misc{izacard2020leveraging,
      title={Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering},
      author={Gautier Izacard and Edouard Grave},
      year={2020},
      eprint={2007.01282},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

[2] G. Izacard, E. Grave Distilling Knowledge from Reader to Retriever for Question Answering

@misc{izacard2020distilling,
      title={Distilling Knowledge from Reader to Retriever for Question Answering},
      author={Gautier Izacard and Edouard Grave},
      year={2020},
      eprint={2012.04584},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

See the LICENSE file for more details.

Owner
Meta Research
Meta Research
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
202 Jan 06, 2023
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022