Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

Related tags

Deep LearningFiD
Overview

This repository contains code for:

  • Fusion-in-Decoder models
  • Distilling Knowledge from Reader to Retriever

Dependencies

  • Python 3
  • PyTorch (currently tested on version 1.6.0)
  • Transformers (version 3.0.2, unlikely to work with a different version)
  • NumPy

Data

Download data

NaturalQuestions and TriviaQA data can be downloaded using get-data.sh. Both datasets are obtained from the original source and the wikipedia dump is downloaded from the DPR repository. In addition to the question and answers, this script retrieves the Wikipedia passages used to trained the released pretrained models.

Data format

The expected data format is a list of entry examples, where each entry example is a dictionary containing

  • id: example id, optional
  • question: question text
  • target: answer used for model training, if not given, the target is randomly sampled from the 'answers' list
  • answers: list of answer text for evaluation, also used for training if target is not given
  • ctxs: a list of passages where each item is a dictionary containing - title: article title - text: passage text

Entry example:

{
  'id': '0',
  'question': 'What element did Marie Curie name after her native land?',
  'target': 'Polonium',
  'answers': ['Polonium', 'Po (chemical element)', 'Po'],
  'ctxs': [
            {
                "title": "Marie Curie",
                "text": "them on visits to Poland. She named the first chemical element that she discovered in 1898 \"polonium\", after her native country. Marie Curie died in 1934, aged 66, at a sanatorium in Sancellemoz (Haute-Savoie), France, of aplastic anemia from exposure to radiation in the course of her scientific research and in the course of her radiological work at field hospitals during World War I. Maria Sk\u0142odowska was born in Warsaw, in Congress Poland in the Russian Empire, on 7 November 1867, the fifth and youngest child of well-known teachers Bronis\u0142awa, \"n\u00e9e\" Boguska, and W\u0142adys\u0142aw Sk\u0142odowski. The elder siblings of Maria"
            },
            {
                "title": "Marie Curie",
                "text": "was present in such minute quantities that they would eventually have to process tons of the ore. In July 1898, Curie and her husband published a joint paper announcing the existence of an element which they named \"polonium\", in honour of her native Poland, which would for another twenty years remain partitioned among three empires (Russian, Austrian, and Prussian). On 26 December 1898, the Curies announced the existence of a second element, which they named \"radium\", from the Latin word for \"ray\". In the course of their research, they also coined the word \"radioactivity\". To prove their discoveries beyond any"
            }
          ]
}

Pretrained models.

Pretrained models can be downloaded using get-model.sh. Currently availble models are [nq_reader_base, nq_reader_large, nq_retriever, tqa_reader_base, tqa_reader_large, tqa_retriever].

bash get-model.sh -m model_name

Performance of the pretrained models:

Mode size NaturalQuestions TriviaQA
dev test dev test
base 49.2 50.1 68.7 69.3
large 52.7 54.4 72.5 72.5

I. Fusion-in-Decoder

Fusion-in-Decoder models can be trained using train_reader.py and evaluated with test_reader.py.

Train

train_reader.py provides the code to train a model. An example usage of the script is given below:

python train_reader.py \
        --train_data train_data.json \
        --eval_data eval_data.json \
        --model_size base \
        --per_gpu_batch_size 1 \
        --n_context 100 \
        --name my_experiment \
        --checkpoint_dir checkpoint \

Training these models with 100 passages is memory intensive. To alleviate this issue we use checkpointing with the --use_checkpoint option. Tensors of variable sizes lead to memory overhead. Encoder input tensors have a fixed size by default, but not the decoder input tensors. The tensor size on the decoder side can be fixed using --answer_maxlength. The large readers have been trained on 64 GPUs with the following hyperparameters:

python train_reader.py \
        --use_checkpoint \
        --lr 0.00005 \
        --optim adamw \
        --scheduler linear \
        --weight_decay 0.01 \
        --text_maxlength 250 \
        --per_gpu_batch_size 1 \
        --n_context 100 \
        --total_step 15000 \
        --warmup_step 1000 \

Test

You can evaluate your model or a pretrained model with test_reader.py. An example usage of the script is provided below.

python test_reader.py \
        --model_path checkpoint_dir/my_experiment/my_model_dir/checkpoint/best_dev \
        --eval_data eval_data.json \
        --per_gpu_batch_size 1 \
        --n_context 100 \
        --name my_test \
        --checkpoint_dir checkpoint \

II. Distilling knowledge from reader to retriever for question answering

This repository also contains code to train a retriever model following the method proposed in our paper: Distilling knowledge from reader to retriever for question answering. This code is heavily inspired by the DPR codebase and reuses parts of it. The proposed method consists in several steps:

1. Obtain reader cross-attention scores

Assuming that we have already retrieved relevant passages for each question, the first step consists in generating cross-attention scores. This can be done using the option --write_crossattention_scores in test.py. It saves the dataset with cross-attention scores in checkpoint_dir/name/dataset_wscores.json. To retrieve the initial set of passages for each question, different options can be considered, such as DPR or BM25.

python test.py \
        --model_path my_model_path \
        --eval_data data.json \
        --per_gpu_batch_size 4 \
        --n_context 100 \
        --name my_test \
        --checkpoint_dir checkpoint \
        --write_crossattention_scores \

2. Retriever training

train_retriever.py provides the code to train a retriever using the scores previously generated.

python train_retriever.py \
        --lr 1e-4 \
        --optim adamw \
        --scheduler linear \
        --train_data train_data.json \
        --eval_data eval_data.json \
        --n_context 100 \
        --total_steps 20000 \
        --scheduler_steps 30000 \

3. Knowldege source indexing

Then the trained retriever is used to index a knowldege source, Wikipedia in our case.

python3 generate_retriever_embedding.py \
        --model_path <model_dir> \ #directory
        --passages passages.tsv \ #.tsv file
        --output_path wikipedia_embeddings \
        --shard_id 0 \
        --num_shards 1 \
        --per_gpu_batch_size 500 \

4. Passage retrieval

After indexing, given an input query, passages can be efficiently retrieved:

python passage_retrieval.py \
    --model_path <model_dir> \
    --passages psgs_w100.tsv \
    --data_path data.json \
    --passages_embeddings "wikipedia_embeddings/wiki_*" \
    --output_path retrieved_data.json \
    --n-docs 100 \

We found that iterating the four steps here can improve performances, depending on the initial set of documents.

References

[1] G. Izacard, E. Grave Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering

@misc{izacard2020leveraging,
      title={Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering},
      author={Gautier Izacard and Edouard Grave},
      year={2020},
      eprint={2007.01282},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

[2] G. Izacard, E. Grave Distilling Knowledge from Reader to Retriever for Question Answering

@misc{izacard2020distilling,
      title={Distilling Knowledge from Reader to Retriever for Question Answering},
      author={Gautier Izacard and Edouard Grave},
      year={2020},
      eprint={2012.04584},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

See the LICENSE file for more details.

Owner
Meta Research
Meta Research
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022