InferSent sentence embeddings

Overview

InferSent

InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language inference data and generalizes well to many different tasks.

We provide our pre-trained English sentence encoder from our paper and our SentEval evaluation toolkit.

Recent changes: Removed train_nli.py and only kept pretrained models for simplicity. Reason is I do not have time anymore to maintain the repo beyond simple scripts to get sentence embeddings.

Dependencies

This code is written in python. Dependencies include:

  • Python 2/3
  • Pytorch (recent version)
  • NLTK >= 3

Download word vectors

Download GloVe (V1) or fastText (V2) vectors:

mkdir GloVe
curl -Lo GloVe/glove.840B.300d.zip http://nlp.stanford.edu/data/glove.840B.300d.zip
unzip GloVe/glove.840B.300d.zip -d GloVe/
mkdir fastText
curl -Lo fastText/crawl-300d-2M.vec.zip https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip
unzip fastText/crawl-300d-2M.vec.zip -d fastText/

Use our sentence encoder

We provide a simple interface to encode English sentences. See demo.ipynb for a practical example. Get started with the following steps:

0.0) Download our InferSent models (V1 trained with GloVe, V2 trained with fastText)[147MB]:

mkdir encoder
curl -Lo encoder/infersent1.pkl https://dl.fbaipublicfiles.com/infersent/infersent1.pkl
curl -Lo encoder/infersent2.pkl https://dl.fbaipublicfiles.com/infersent/infersent2.pkl

Note that infersent1 is trained with GloVe (which have been trained on text preprocessed with the PTB tokenizer) and infersent2 is trained with fastText (which have been trained on text preprocessed with the MOSES tokenizer). The latter also removes the padding of zeros with max-pooling which was inconvenient when embedding sentences outside of their batches.

0.1) Make sure you have the NLTK tokenizer by running the following once:

import nltk
nltk.download('punkt')

1) Load our pre-trained model (in encoder/):

from models import InferSent
V = 2
MODEL_PATH = 'encoder/infersent%s.pkl' % V
params_model = {'bsize': 64, 'word_emb_dim': 300, 'enc_lstm_dim': 2048,
                'pool_type': 'max', 'dpout_model': 0.0, 'version': V}
infersent = InferSent(params_model)
infersent.load_state_dict(torch.load(MODEL_PATH))

2) Set word vector path for the model:

W2V_PATH = 'fastText/crawl-300d-2M.vec'
infersent.set_w2v_path(W2V_PATH)

3) Build the vocabulary of word vectors (i.e keep only those needed):

infersent.build_vocab(sentences, tokenize=True)

where sentences is your list of n sentences. You can update your vocabulary using infersent.update_vocab(sentences), or directly load the K most common English words with infersent.build_vocab_k_words(K=100000). If tokenize is True (by default), sentences will be tokenized using NTLK.

4) Encode your sentences (list of n sentences):

embeddings = infersent.encode(sentences, tokenize=True)

This outputs a numpy array with n vectors of dimension 4096. Speed is around 1000 sentences per second with batch size 128 on a single GPU.

5) Visualize the importance that our model attributes to each word:

We provide a function to visualize the importance of each word in the encoding of a sentence:

infersent.visualize('A man plays an instrument.', tokenize=True)

Model

Evaluate the encoder on transfer tasks

To evaluate the model on transfer tasks, see SentEval. Be mindful to choose the same tokenization used for training the encoder. You should obtain the following test results for the baselines and the InferSent models:

Model MR CR SUBJ MPQA STS14 STS Benchmark SICK Relatedness SICK Entailment SST TREC MRPC
InferSent1 81.1 86.3 92.4 90.2 .68/.65 75.8/75.5 0.884 86.1 84.6 88.2 76.2/83.1
InferSent2 79.7 84.2 92.7 89.4 .68/.66 78.4/78.4 0.888 86.3 84.3 90.8 76.0/83.8
SkipThought 79.4 83.1 93.7 89.3 .44/.45 72.1/70.2 0.858 79.5 82.9 88.4 -
fastText-BoV 78.2 80.2 91.8 88.0 .65/.63 70.2/68.3 0.823 78.9 82.3 83.4 74.4/82.4

Reference

Please consider citing [1] if you found this code useful.

Supervised Learning of Universal Sentence Representations from Natural Language Inference Data (EMNLP 2017)

[1] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, A. Bordes, Supervised Learning of Universal Sentence Representations from Natural Language Inference Data

@InProceedings{conneau-EtAl:2017:EMNLP2017,
  author    = {Conneau, Alexis  and  Kiela, Douwe  and  Schwenk, Holger  and  Barrault, Lo\"{i}c  and  Bordes, Antoine},
  title     = {Supervised Learning of Universal Sentence Representations from Natural Language Inference Data},
  booktitle = {Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing},
  month     = {September},
  year      = {2017},
  address   = {Copenhagen, Denmark},
  publisher = {Association for Computational Linguistics},
  pages     = {670--680},
  url       = {https://www.aclweb.org/anthology/D17-1070}
}

Related work

Owner
Facebook Research
Facebook Research
Calibre recipe to convert latest issue of Analyse & Kritik into an ebook

Calibre Recipe für "Analyse & Kritik" Dies ist ein "Recipe" für die Konvertierung der aktuellen Ausgabe der Zeitung Analyse & Kritik in ein Ebook. Es

Henning 3 Jan 04, 2022
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

LEE YOON HYUNG 147 Dec 05, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
OpenAI CLIP text encoders for multiple languages!

Multilingual-CLIP OpenAI CLIP text encoders for any language Colab Notebook · Pre-trained Models · Report Bug Overview OpenAI recently released the pa

Fredrik Carlsson 481 Dec 30, 2022
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022