Open source code for the paper of Neural Sparse Voxel Fields.

Related tags

Deep LearningNSVF
Overview

Neural Sparse Voxel Fields (NSVF)

Project Page | Video | Paper | Data

Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is a challenging problem because it requires the difficult step of capturing detailed appearance and geometry models. Neural rendering is an emerging field that employs deep neural networks to implicitly learn scene representations encapsulating both geometry and appearance from 2D observations with or without a coarse geometry. However, existing approaches in this field often show blurry renderings or suffer from slow rendering process. We propose Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering.

Here is the official repo for the paper:

We also provide our unofficial implementation for:

Table of contents



Requirements and Installation

This code is implemented in PyTorch using fairseq framework.

The code has been tested on the following system:

  • Python 3.7
  • PyTorch 1.4.0
  • Nvidia apex library (optional)
  • Nvidia GPU (Tesla V100 32GB) CUDA 10.1

Only learning and rendering on GPUs are supported.

To install, first clone this repo and install all dependencies:

pip install -r requirements.txt

Then, run

pip install --editable ./

Or if you want to install the code locally, run:

python setup.py build_ext --inplace

Dataset

You can download the pre-processed synthetic and real datasets used in our paper. Please also cite the original papers if you use any of them in your work.

Dataset Download Link Notes on Dataset Split
Synthetic-NSVF download (.zip) 0_* (training) 1_* (validation) 2_* (testing)
Synthetic-NeRF download (.zip) 0_* (training) 1_* (validation) 2_* (testing)
BlendedMVS download (.zip) 0_* (training) 1_* (testing)
Tanks&Temples download (.zip) 0_* (training) 1_* (testing)

Prepare your own dataset

To prepare a new dataset of a single scene for training and testing, please follow the data structure:

<dataset_name>
|-- bbox.txt         # bounding-box file
|-- intrinsics.txt   # 4x4 camera intrinsics
|-- rgb
    |-- 0.png        # target image for each view
    |-- 1.png
    ...
|-- pose
    |-- 0.txt        # camera pose for each view (4x4 matrices)
    |-- 1.txt
    ...
[optional]
|-- test_traj.txt    # camera pose for free-view rendering demonstration (4N x 4)

where the bbox.txt file contains a line describing the initial bounding box and voxel size:

x_min y_min z_min x_max y_max z_max initial_voxel_size

Note that the file names of target images and those of the corresponding camera pose files are not required to be exactly the same. However, the orders of these two kinds of files (sorted by string) must match. The datasets are split with view indices. For example, "train (0..100), valid (100..200) and test (200..400)" mean the first 100 views for training, 100-199th views for validation, and 200-399th views for testing.

Train a new model

Given the dataset of a single scene ({DATASET}), we use the following command for training an NSVF model to synthesize novel views at 800x800 pixels, with a batch size of 4 images per GPU and 2048 rays per image. By default, the code will automatically detect all available GPUs.

In the following example, we use a pre-defined architecture nsvf_base with specific arguments:

  • By setting --no-sampling-at-reader, the model only samples pixels in the projected image region of sparse voxels for training.
  • By default, we set the ray-marching step size to be the ratio 1/8 (0.125) of the voxel size which is typically described in the bbox.txt file.
  • It is optional to turn on --use-octree. It will build a sparse voxel octree to speed-up the ray-voxel intersection especially when the number of voxels is larger than 10000.
  • By setting --pruning-every-steps as 2500, the model performs self-pruning at every 2500 steps.
  • By setting --half-voxel-size-at and --reduce-step-size-at as 5000,25000,75000, the voxel size and step size are halved at 5k, 25k and 75k, respectively.

Note that, although above parameter settings are used for most of the experiments in the paper, it is possible to tune these parameters to achieve better quality. Besides the above parameters, other parameters can also use default settings.

Besides the architecture nsvf_base, you may check other architectures or define your own architectures in the file fairnr/models/nsvf.py.

python -u train.py ${DATASET} \
    --user-dir fairnr \
    --task single_object_rendering \
    --train-views "0..100" --view-resolution "800x800" \
    --max-sentences 1 --view-per-batch 4 --pixel-per-view 2048 \
    --no-preload \
    --sampling-on-mask 1.0 --no-sampling-at-reader \
    --valid-views "100..200" --valid-view-resolution "400x400" \
    --valid-view-per-batch 1 \
    --transparent-background "1.0,1.0,1.0" --background-stop-gradient \
    --arch nsvf_base \
    --initial-boundingbox ${DATASET}/bbox.txt \
    --use-octree \
    --raymarching-stepsize-ratio 0.125 \
    --discrete-regularization \
    --color-weight 128.0 --alpha-weight 1.0 \
    --optimizer "adam" --adam-betas "(0.9, 0.999)" \
    --lr 0.001 --lr-scheduler "polynomial_decay" --total-num-update 150000 \
    --criterion "srn_loss" --clip-norm 0.0 \
    --num-workers 0 \
    --seed 2 \
    --save-interval-updates 500 --max-update 150000 \
    --virtual-epoch-steps 5000 --save-interval 1 \
    --half-voxel-size-at  "5000,25000,75000" \
    --reduce-step-size-at "5000,25000,75000" \
    --pruning-every-steps 2500 \
    --keep-interval-updates 5 --keep-last-epochs 5 \
    --log-format simple --log-interval 1 \
    --save-dir ${SAVE} \
    --tensorboard-logdir ${SAVE}/tensorboard \
    | tee -a $SAVE/train.log

The checkpoints are saved in {SAVE}. You can launch tensorboard to check training progress:

tensorboard --logdir=${SAVE}/tensorboard --port=10000

There are more examples of training scripts to reproduce the results of our paper under examples.

Evaluation

Once the model is trained, the following command is used to evaluate rendering quality on the test views given the {MODEL_PATH}.

python validate.py ${DATASET} \
    --user-dir fairnr \
    --valid-views "200..400" \
    --valid-view-resolution "800x800" \
    --no-preload \
    --task single_object_rendering \
    --max-sentences 1 \
    --valid-view-per-batch 1 \
    --path ${MODEL_PATH} \
    --model-overrides '{"chunk_size":512,"raymarching_tolerance":0.01,"tensorboard_logdir":"","eval_lpips":True}' \

Note that we override the raymarching_tolerance to 0.01 to enable early termination for rendering speed-up.

Free Viewpoint Rendering

Free-viewpoint rendering can be achieved once a model is trained and a rendering trajectory is specified. For example, the following command is for rendering with a circle trajectory (angular speed 3 degree/frame, 15 frames per GPU). This outputs per-view rendered images and merge the images into a .mp4 video in ${SAVE}/output as follows:

By default, the code can detect all available GPUs.

python render.py ${DATASET} \
    --user-dir fairnr \
    --task single_object_rendering \
    --path ${MODEL_PATH} \
    --model-overrides '{"chunk_size":512,"raymarching_tolerance":0.01}' \
    --render-beam 1 --render-angular-speed 3 --render-num-frames 15 \
    --render-save-fps 24 \
    --render-resolution "800x800" \
    --render-path-style "circle" \
    --render-path-args "{'radius': 3, 'h': 2, 'axis': 'z', 't0': -2, 'r':-1}" \
    --render-output ${SAVE}/output \
    --render-output-types "color" "depth" "voxel" "normal" --render-combine-output \
    --log-format "simple"

Our code also supports rendering for given camera poses. For instance, the following command is for rendering with the camera poses defined in the 200-399th files under folder ${DATASET}/pose:

python render.py ${DATASET} \
    --user-dir fairnr \
    --task single_object_rendering \
    --path ${MODEL_PATH} \
    --model-overrides '{"chunk_size":512,"raymarching_tolerance":0.01}' \
    --render-save-fps 24 \
    --render-resolution "800x800" \
    --render-camera-poses ${DATASET}/pose \
    --render-views "200..400" \
    --render-output ${SAVE}/output \
    --render-output-types "color" "depth" "voxel" "normal" --render-combine-output \
    --log-format "simple"

The code also supports rendering with camera poses defined in a .txt file. Please refer to this example.

Extract the Geometry

We also support running marching cubes to extract the iso-surfaces as triangle meshes from a trained NSVF model and saved as {SAVE}/{NAME}.ply.

python extract.py \
    --user-dir fairnr \
    --path ${MODEL_PATH} \
    --output ${SAVE} \
    --name ${NAME} \
    --format 'mc_mesh' \
    --mc-threshold 0.5 \
    --mc-num-samples-per-halfvoxel 5

It is also possible to export the learned sparse voxels by setting --format 'voxel_mesh'. The output .ply file can be opened with any 3D viewers such as MeshLab.

License

NSVF is MIT-licensed. The license applies to the pre-trained models as well.

Citation

Please cite as

@article{liu2020neural,
  title={Neural Sparse Voxel Fields},
  author={Liu, Lingjie and Gu, Jiatao and Lin, Kyaw Zaw and Chua, Tat-Seng and Theobalt, Christian},
  journal={NeurIPS},
  year={2020}
}
Owner
Meta Research
Meta Research
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023