The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

Overview

TimeSformer

This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provide PyTorch code for training and testing our proposed TimeSformer model. TimeSformer provides an efficient video classification framework that achieves state-of-the-art results on several video action recognition benchmarks such as Kinetics-400.

If you find TimeSformer useful in your research, please use the following BibTeX entry for citation.

@misc{bertasius2021spacetime,
    title   = {Is Space-Time Attention All You Need for Video Understanding?},
    author  = {Gedas Bertasius and Heng Wang and Lorenzo Torresani},
    year    = {2021},
    eprint  = {2102.05095},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}

Model Zoo

We provide TimeSformer models pretrained on Kinetics-400 (K400), Kinetics-600 (K600), Something-Something-V2 (SSv2), and HowTo100M datasets.

name dataset # of frames spatial crop [email protected] [email protected] url
TimeSformer K400 8 224 77.9 93.2 model
TimeSformer-HR K400 16 448 79.6 94.0 model
TimeSformer-L K400 96 224 80.6 94.7 model
name dataset # of frames spatial crop [email protected] [email protected] url
TimeSformer K600 8 224 79.1 94.4 model
TimeSformer-HR K600 16 448 81.8 95.8 model
TimeSformer-L K600 96 224 82.2 95.6 model
name dataset # of frames spatial crop [email protected] [email protected] url
TimeSformer SSv2 8 224 59.1 85.6 model
TimeSformer-HR SSv2 16 448 61.8 86.9 model
TimeSformer-L SSv2 64 224 62.0 87.5 model
name dataset # of frames spatial crop single clip coverage [email protected] url
TimeSformer HowTo100M 8 224 8.5s 56.8 model
TimeSformer HowTo100M 32 224 34.1s 61.2 model
TimeSformer HowTo100M 64 448 68.3s 62.2 model
TimeSformer HowTo100M 96 224 102.4s 62.6 model

We note that these models were retrained using a slightly different implementation than the one used in the paper. Therefore, there might be a small difference in performance compared to the results reported in the paper.

Installation

First, create a conda virtual environment and activate it:

conda create -n timesformer python=3.7 -y
source activate timesformer

Then, install the following packages:

  • torchvision: pip install torchvision or conda install torchvision -c pytorch
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • simplejson: pip install simplejson
  • einops: pip install einops
  • timm: pip install timm
  • PyAV: conda install av -c conda-forge
  • psutil: pip install psutil
  • OpenCV: pip install opencv-python
  • tensorboard: pip install tensorboard

Lastly, build the TimeSformer codebase by running:

git clone https://github.com/facebookresearch/TimeSformer
cd TimeSformer
python setup.py build develop

Usage

Dataset Preparation

Please use the dataset preparation instructions provided in DATASET.md.

Training the Default TimeSformer

Training the default TimeSformer that uses divided space-time attention, and operates on 8-frame clips cropped at 224x224 spatial resolution, can be done using the following command:

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_8x32_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

You may need to pass location of your dataset in the command line by adding DATA.PATH_TO_DATA_DIR path_to_your_dataset, or you can simply add

DATA:
  PATH_TO_DATA_DIR: path_to_your_dataset

To the yaml configs file, then you do not need to pass it to the command line every time.

Using a Different Number of GPUs

If you want to use a smaller number of GPUs, you need to modify .yaml configuration files in configs/. Specifically, you need to modify the NUM_GPUS, TRAIN.BATCH_SIZE, TEST.BATCH_SIZE, DATA_LOADER.NUM_WORKERS entries in each configuration file. The BATCH_SIZE entry should be the same or higher as the NUM_GPUS entry. In configs/Kinetics/TimeSformer_divST_8x32_224_4gpus.yaml, we provide a sample configuration file for a 4 GPU setup.

Using Different Self-Attention Schemes

If you want to experiment with different space-time self-attention schemes, e.g., space-only or joint space-time attention, use the following commands:

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_spaceOnly_8x32_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_jointST_8x32_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Training Different TimeSformer Variants

If you want to train more powerful TimeSformer variants, e.g., TimeSformer-HR (operating on 16-frame clips sampled at 448x448 spatial resolution), and TimeSformer-L (operating on 96-frame clips sampled at 224x224 spatial resolution), use the following commands:

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_16x16_448.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_96x4_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Note that for these models you will need a set of GPUs with ~32GB of memory.

Inference

Use TRAIN.ENABLE and TEST.ENABLE to control whether training or testing is required for a given run. When testing, you also have to provide the path to the checkpoint model via TEST.CHECKPOINT_FILE_PATH.

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_8x32_224_TEST.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint \
  TRAIN.ENABLE False \

Single-Node Training via Slurm

To train TimeSformer via Slurm, please check out our single node Slurm training script slurm_scripts/run_single_node_job.sh.

Multi-Node Training via Submitit

Distributed training is available via Slurm and submitit

pip install submitit

To train TimeSformer model on Kinetics using 4 nodes with 8 gpus each use the following command:

python tools/submit.py --cfg configs/Kinetics/TimeSformer_divST_8x32_224.yaml --job_dir  /your/job/dir/${JOB_NAME}/ --num_shards 4 --name ${JOB_NAME} --use_volta32

We provide a script for launching slurm jobs in slurm_scripts/run_multi_node_job.sh.

Finetuning

To finetune from an existing PyTorch checkpoint add the following line in the command line, or you can also add it in the YAML config:

TRAIN.CHECKPOINT_FILE_PATH path_to_your_PyTorch_checkpoint
TRAIN.FINETUNE True

HowTo100M Dataset Split

If you want to experiment with the long-term video modeling task on HowTo100M, please download the train/test split files from here.

Environment

The code was developed using python 3.7 on Ubuntu 20.04. For training, we used four GPU compute nodes each node containing 8 Tesla V100 GPUs (32 GPUs in total). Other platforms or GPU cards have not been fully tested.

License

The majority of this work is licensed under CC-NC 4.0 International license. However portions of the project are available under separate license terms: SlowFast and pytorch-image-models are licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests. Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Acknowledgements

TimeSformer is built on top of PySlowFast and pytorch-image-models by Ross Wightman. We thank the authors for releasing their code. If you use our model, please consider citing these works as well:

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
Owner
Facebook Research
Facebook Research
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022