Evaluating Cross-lingual Sentence Representations

Related tags

Deep LearningXNLI
Overview

XNLI: The Cross-Lingual NLI Corpus

XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages.

New: XLM and Multilingual BERT use XNLI to evaluate the quality of the cross-lingual representations.

Introduction

Many NLP systems (e.g. sentiment analysis, topic classification, feed ranking) rely on training data in one high-resource language, but cannot be directly used to make predictions for other languages at test time. This problem happens in almost any industrial application that involves cross-lingual data.

Machine translation can be used to translate any sample into the high-resource language to alleviate this issue. However, having an MT system in every direction is costly and may not the best solution for cross-lingual classification. Cross-lingual encoders are a cheaper and more elegant alternative.

To evaluate such cross-lingual sentence understanding methods, we built XNLI, an extension of the SNLI/MultiNLI corpus in 15 languages. XNLI raises the following research question: how can we make predictions in any language at test time, when we only have English training data for that task?

While industrial applications may not include NLI in their routine tasks, we believe that NLI is a good testbed for evaluating cross-lingual sentence representations, and that better approaches for XNLI will result in better XLU methods.

The XNLI corpus

The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and 2,500 dev pairs for the MultiNLI corpus. The pairs are annotated with textual entailment and translated into 14 languages: French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindi, Swahili and Urdu. This results in 112.5k annotated pairs. Each premise can be associated with the corresponding hypothesis in the 15 languages, summing up to more than 1.5M combinations.

Examples

Download

XNLI is distributed in a single ZIP file containing the corpus as both JSON lines (jsonl) and tab-separated text (txt). The English training data can be found on the MultiNLI website.

Download: XNLI 1.0 (17MB, ZIP)

XNLI can also be used as a 15way parallel corpus of 10,000 sentences, for building or evaluating Machine Translation systems. XNLI provides additional open parallel data for low-resource languages such as Swahili or Urdu.

Download XNLI-15way (12MB, ZIP)

Useful XLU resources

Parallel data for aligning sentence encoders: OPUS: the open parallel corpus

Monolingual word embeddings in 157 languages: fastText CommonCrawl vectors

Aligning word embeddings: MUSE

Data description paper and citation

A description of the data can be found here or in the corpus package zip. If you use the corpus in an academic paper, please consider citing:

@InProceedings{conneau2018xnli,
  author = "Conneau, Alexis
        and Rinott, Ruty
        and Lample, Guillaume
        and Williams, Adina
        and Bowman, Samuel R.
        and Schwenk, Holger
        and Stoyanov, Veselin",
  title = "XNLI: Evaluating Cross-lingual Sentence Representations",
  booktitle = "Proceedings of the 2018 Conference on Empirical Methods
               in Natural Language Processing",
  year = "2018",
  publisher = "Association for Computational Linguistics",
  location = "Brussels, Belgium",
}

Baselines and MT data

The XNLI paper presents several baselines for language adaptation.

We also release the machine translated data for reproducing the TRANSLATE-TRAIN and TRANSLATE-TEST:

Download: XNLI-MT 1.0 (445MB, ZIP)

License

XNLI is licensed under the license found in the LICENSE file. See details in the XNLI paper.

Owner
Meta Research
Meta Research
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022