Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Related tags

Deep LearningMADA
Overview

Multi-Anchor Active Domain Adaptation for Semantic Segmentation

Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Yefeng Zheng

paper

Table of Contents

Introduction

This respository contains the MADA method as described in the ICCV 2021 Oral paper "Multi-Anchor Active Domain Adaptation for Semantic Segmentation".

Requirements

The code requires Pytorch >= 0.4.1 with python 3.6. The code is trained using a NVIDIA Tesla V100 with 32 GB memory. You can simply reduce the batch size in stage 2 to run on a smaller memory.

Usage

  1. Preparation:
  • Download the GTA5 dataset as the source domain, and the Cityscapes dataset as the target domain.
  • Download the weights and features. Move features to the MADA directory.
  1. Setup the config files.
  • Set the data paths
  • Set the pretrained model paths
  1. Training-quick
  • To run the code with our weights and anchors (anchors/cluster_centroids_full_10.pkl):
python3 train_active_stage1.py
python3 train_active_stage2.py
  • During the training, the generated files (log file) will be written in the folder 'runs/..'.
  1. Evaluation
  • Set the config file for test (configs/test_from_city_to_gta.yml):
  • Run:
python3 test.py

to see the results.

  1. Training-whole process
  • Setting the config files.
  • Stage 1:
  • 1-save_feat_source.py: get the './features/full_dataset_objective_vectors.pkl'
python3 save_feat_source.py
  • 2-cluster_anchors_source.py: cluster the './features/full_dataset_objective_vectors.pkl' to './anchors/cluster_centroids_full_10.pkl'
python3 cluster_anchors_source.py
  • 3-select_active_samples.py: select active samples with './anchors/cluster_centroids_full_10.pkl' to 'stage1_cac_list_0.05.txt'
python3 select_active_samples.py
  • 4-train_active_stage1.py: train stage1 model with anchors './anchors/cluster_centroids_full_10.pkl' and active samples 'stage1_cac_list_0.05.txt', get the 'from_gta5_to_cityscapes_on_deeplab101_best_model_stage1.pkl', which is stored in the runs/active_from_gta_to_city_stage1
python3 train_active_stage1.py
  • Stage 2:
  • 1-save_feat_target.py: get the './features/target_full_dataset_objective_vectors.pkl.pkl'
python3 save_feat_target.py
  • 2-cluster_anchors_target.py: cluster the './features/target_full_dataset_objective_vectors.pkl' to './anchors/cluster_centroids_full_target_10.pkl'
python3 cluster_anchors_target.py
  • 3-train_active_stage2.py: train stage2 model with anchors './anchors/cluster_centroids_full_target_10.pkl' and active samples 'stage1_cac_list_0.05.txt', get the 'from_gta5_to_cityscapes_on_deeplab101_best_model_stage2.pkl'
python3 train_active_stage2.py

License

MIT

The code is heavily borrowed from the CAG_UDA (https://github.com/RogerZhangzz/CAG_UDA).

If you use this code and find it usefule, please cite:

@inproceedings{ning2021multi,
  title={Multi-Anchor Active Domain Adaptation for Semantic Segmentation},
  author={Ning, Munan and Lu, Donghuan and Wei, Dong and Bian, Cheng and Yuan, Chenglang and Yu, Shuang and Ma, Kai and Zheng, Yefeng},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9112--9122},
  year={2021}
}

Notes

The anchors are calcuated based on features captured by decoders.

In this paper, we utilize the more powerful decoder in DeeplabV3+, it may cause somewhere unfair. So we strongly recommend the ProDA which utilize origin DeeplabV2 decoder.

Owner
Munan Ning
Munan Ning
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022