Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

Related tags

Deep Learningaccentor
Overview

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues

Overview

ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialogues from Schema Guided Dialogue (SGD) and MultiWOZ 2.1, allowing researchers to study contexutal addition of chit-chat utterances for virtual assistants, to make task-oriented dialogues more engaging and social.

We also provide three new models for ACCENTOR explicitly trained to predict user goals and to generate contextually relevant chit-chat responses.

Automatic and human evaluations show that, compared with the state of-the-art task-oriented baseline, our models can code-switch between task and chit-chat to be more engaging, interesting, knowledgeable, and humanlike, while maintaining competitive task performance.

For more details, please refer to this paper.

Data

  • v1.0/candidates-{sgd,multiwoz}.json: Annotated chit-chat candidates. The format is as follows.
{
 "dialogue 1 / id": [
  [
   dialogue 1 / candidate 1 / turn id,
   dialogue 1 / candidate 1 / position,
   dialogue 1 / candidate 1 / candidate,
   dialogue 1 / candidate 1 / label,
   dialogue 1 / candidate 1 / justification
  ],
  [
   dialogue 1 / candidate 2 / turn id,
   ...
  ],
  ...
 ],
 "dialogue 2 / id": [
  ...
 ],
 ...
}
  • Folder v1.0/accentor-sgd: The augmented SGD dataset. The format follows the original SGD dataset, with two additional keys (i.e., beginning and end) that store lists of (candidate, label, justification) tuples.

    • The folder is generated by v1.0/accentor-sgd.py (with v1.0/candidates-sgd.json and the original SGD dataset as input). Usage: python3 v1.0/accentor-sgd.py --help.
  • v1.0/accentor-multiwoz-1k.json: 1K augmented MultiWOZ 2.1 dialogues. The format follows the original MultiWOZ dataset, with two additional keys (i.e., beginning and end) that store lists of (candidate, label, justification) tuples.

    • The file is generated by v1.0/accentor-multiwoz.py (with v1.0/candidates-multiwoz.json and the original MultiWOZ 2.1 dataset as input). Usage: python3 v1.0/accentor-multiwoz.py --help.

Baseline Models

Preparation

  • Dependencies: ParlAI (af12799a) and Transformers (2.11.0)

  • Run the following commands to prepare the data for model training and the off-the-shelf models (i.e., a task-oriented dialogue model and a chit-chat model) for Arranger and Rewriter.

cp -r ./v1.0/accentor-sgd .

python3 gen_delex.py

python3 gen_parlai_data.py

parlai train_model -t fromfile:parlaiformat --fromfile_datapath ./parlai --fromfile-datatype-extension true  -m transformer/generator --init-model zoo:tutorial_transformer_generator/model --dict-file zoo:tutorial_transformer_generator/model.dict --embedding-size 512 --n-layers 8 --ffn-size 2048 --dropout 0.1 --n-heads 16 --learn-positional-embeddings True --n-positions 512 --variant xlm --activation gelu --skip-generation True --fp16 True --text-truncate 512 --label-truncate 128 --dict-tokenizer bpe --dict-lower True -lr 1e-06 --optimizer adamax --lr-scheduler reduceonplateau --gradient-clip 0.1 -veps 0.25 --betas 0.9,0.999 --update-freq 1 --attention-dropout 0.0 --relu-dropout 0.0 --skip-generation True -vp 15 -stim 60 -vme 20000 -bs 16 -vmt ppl -vmm min --save-after-valid True --model-file ./train_90M

parlai interactive -mf ./train_90M < lm.input.dev.cc.txt > lm.output.dev.cc.txt

parlai interactive -mf ./train_90M < lm.input.test.cc.txt > lm.output.test.cc.txt

python3 run_language_modeling.py --output_dir=output_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.txt --do_eval  --eval_data_file=lm.input.dev.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.txt --output dev.inference.gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.txt --output test.inference.gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

SimpleTOD+

  • Dependency: Transformers (2.11.0)
python3 run_language_modeling.py --output_dir=output_both_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.both.txt --do_eval  --eval_data_file=lm.input.dev.both.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.txt --output dev.inference.both_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_both_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.txt --output test.inference.both_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_both_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

Arranger

  • Dependency: Transformers (2.2.0)
python3 gen_arranger_input.py

python3 run_multiple_choice.py --model_type roberta --task_name acc --model_name_or_path roberta-base --do_train --do_eval --do_test --do_lower_case --data_dir . --learning_rate 2e-5 --num_train_epochs 3 --max_seq_length 512 --output_dir acc_arranger_roberta_base_3epoch --per_gpu_eval_batch_size=16 --per_gpu_train_batch_size=1 --gradient_accumulation_steps 24 --overwrite_output --save_steps 10000

python3 gen_arranger_output.py

Rewriter

  • Dependency: Transformers 2.11.0
python3 gen_rewriter_data.py

python3 run_language_modeling.py --output_dir=output_ff_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.ff.txt  --do_eval --eval_data_file=lm.input.dev.ff.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.ff.txt --output dev.inference.ff_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_ff_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.ff.txt --output test.inference.ff_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_ff_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

Evaluation

  • Dependency: the official evaluation script of SGD

  • Pass the output inference files (i.e., {dev,test}.inference*.json) to gen_predict.py to obtain act-slot F1 and BLEU-4 scores. For example,

python3 gen_predict.py --inference test.inference.both_gpt2_10epoch_1e-3_fp16.json --split test
  • The above command will also generate a folder (named ./prediction/ by default), which can be passed to the official evaluation script of SGD to obtain the joint goal accuracy and average accuracy. For example,
python3 -m schema_guided_dst.evaluate --dstc8_data_dir ./simpletod/ --prediction_dir ./prediction/test/ --eval_set test --output_metric_file simpletod+_test_result.json

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following article (pdf):

@inproceedings{sun2020adding,
  title={Adding Chit-Chat to Enhance Task-Oriented Dialogues},
  author={Sun, Kai and Moon, Seungwhan and Crook, Paul and Roller, Stephen and Silvert, Becka and Liu, Bing and Wang, Zhiguang and Liu, Honglei and Cho, Eunjoon and Cardie, Claire},
  booktitle={Proceedings of the NAACL-HLT},
  year={2021},
  url={https://arxiv.org/abs/2010.12757}
}

License

ACCENTOR is released under CC-BY-SA-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022