Transformer training code for sequential tasks

Overview

Sequential Transformer

This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer architecture, it uses caching of previous representations and relative position embeddings to better adapt to sequential tasks. In addition, the code also implements the following projects as described below and in this blog post:

Requirements

You need PyTorch 0.4.1 or above and a cuda-enabled GPU to run the code. If there are multiple GPUs available, the code uses nn.DataParallel to utilize them. For better efficiency, enable distributed training by --distributed argument, which can run on multiple nodes.

Adaptive Attention Span

This code can be used for running experiments in Adaptive Attention Span for Transformers paper. The adaptive span allows a model to learn an optimal context size for each self-attention head from training data. As shown in the below figure, only few heads require long attention span, thus making it possible to increase the context size to 8k tokens without increasing computation time and memory footprint significantly.

An argument --adapt-span enables adaptive span. Otherwise a model will have a fixed attention span. The adaptive-span is implemented as a nn.Module to make it easier to plug it into other models.

Running experiments in the paper

Scripts for running experiments in the paper are located in ./experiments/ directory. For example, a smaller 8-layer version of our model can be trained on a single GPU by running:

bash experiments/enwik8_small.sh

It should reach about 1.3bpc on dev after 150k steps.

For training larger models, multiple GPUs are recommended. In the script files, you can configure the number of available GPUs. Increase the --batch-split argument if you run out of GPU memory (it splits batches into smaller pieces without changing the final result).

We obtained the following results in our experiments:

Experiment #params dev test
enwik8 38M 1.04 bpb 1.02 bpb
enwik8_large 209M 1.00 bpb 0.98 bpb
text8 39M 1.05 bpc 1.11 bpc
text8_large 209M 1.01 bpc 1.07 bpc

A large model training takes about 1.2sec/batch near the end (initially it's faster because the attention spans are smaller) on 8 V100 GPUs. So, for example, the whole enwik8_large training of 170k steps should take less than 2.4 days.

Pre-trained models

You can download pre-trained models by running the get_pretrained.sh script. Then the same scripts in ./experiments/ can be used to evaluate those models. Since the download script puts models in ./checkpoints/, make sure there is no file with the same name. Note that these pre-trained models are obtained by rerunning the training scripts after the code cleanup, so there are small differences from the above results due to the randomness of the training.

All-attention Network

The code also can be used for training All-attention Networks introduced in Augmenting Self-attention with Persistent Memory. If --pers-mem-size argument is set to N, all FF sublayers will be removed from the model and N persistent memory vectors will be added to every self-attention sublayer. The following experiments can be found in ./experiments/ directory.

Experiment #params dev test
enwik8_pers_small.sh 39M 1.03 bpb 1.01 bpb
enwik8_pers.sh 114M 1.00 bpb 0.98 bpb
wiki103_pers.sh 133M 18.8 ppl * 19.7 ppl *

(*This number is slightly better than the paper because it includes end-of-line as a token.)

License

The code is licensed under CC-BY-NC license. See the LICENSE file for more details.

Acknowledgement

We thank Xavier Martinet for helping with cleaning the code. The data preprocessing scripts are downloaded from awd-lstm and transformer-XL repos. The adagrad_with_grad_clip.py is mostly adapted from PyTorch.

Owner
Meta Research
Meta Research
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles

NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles NewsMTSC is a dataset for target-dependent sentiment classification (TSC)

Felix Hamborg 79 Dec 30, 2022
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
189 Jan 02, 2023
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyá»…n Minh PhÆ°Æ¡ng 22 Dec 06, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
RecipeReduce: Simplified Recipe Processing for Lazy Programmers

RecipeReduce This repo will help you figure out the amount of ingredients to buy for a certain number of meals with selected recipes. RecipeReduce Get

Qibin Chen 9 Apr 22, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022