Transformer training code for sequential tasks

Overview

Sequential Transformer

This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer architecture, it uses caching of previous representations and relative position embeddings to better adapt to sequential tasks. In addition, the code also implements the following projects as described below and in this blog post:

Requirements

You need PyTorch 0.4.1 or above and a cuda-enabled GPU to run the code. If there are multiple GPUs available, the code uses nn.DataParallel to utilize them. For better efficiency, enable distributed training by --distributed argument, which can run on multiple nodes.

Adaptive Attention Span

This code can be used for running experiments in Adaptive Attention Span for Transformers paper. The adaptive span allows a model to learn an optimal context size for each self-attention head from training data. As shown in the below figure, only few heads require long attention span, thus making it possible to increase the context size to 8k tokens without increasing computation time and memory footprint significantly.

An argument --adapt-span enables adaptive span. Otherwise a model will have a fixed attention span. The adaptive-span is implemented as a nn.Module to make it easier to plug it into other models.

Running experiments in the paper

Scripts for running experiments in the paper are located in ./experiments/ directory. For example, a smaller 8-layer version of our model can be trained on a single GPU by running:

bash experiments/enwik8_small.sh

It should reach about 1.3bpc on dev after 150k steps.

For training larger models, multiple GPUs are recommended. In the script files, you can configure the number of available GPUs. Increase the --batch-split argument if you run out of GPU memory (it splits batches into smaller pieces without changing the final result).

We obtained the following results in our experiments:

Experiment #params dev test
enwik8 38M 1.04 bpb 1.02 bpb
enwik8_large 209M 1.00 bpb 0.98 bpb
text8 39M 1.05 bpc 1.11 bpc
text8_large 209M 1.01 bpc 1.07 bpc

A large model training takes about 1.2sec/batch near the end (initially it's faster because the attention spans are smaller) on 8 V100 GPUs. So, for example, the whole enwik8_large training of 170k steps should take less than 2.4 days.

Pre-trained models

You can download pre-trained models by running the get_pretrained.sh script. Then the same scripts in ./experiments/ can be used to evaluate those models. Since the download script puts models in ./checkpoints/, make sure there is no file with the same name. Note that these pre-trained models are obtained by rerunning the training scripts after the code cleanup, so there are small differences from the above results due to the randomness of the training.

All-attention Network

The code also can be used for training All-attention Networks introduced in Augmenting Self-attention with Persistent Memory. If --pers-mem-size argument is set to N, all FF sublayers will be removed from the model and N persistent memory vectors will be added to every self-attention sublayer. The following experiments can be found in ./experiments/ directory.

Experiment #params dev test
enwik8_pers_small.sh 39M 1.03 bpb 1.01 bpb
enwik8_pers.sh 114M 1.00 bpb 0.98 bpb
wiki103_pers.sh 133M 18.8 ppl * 19.7 ppl *

(*This number is slightly better than the paper because it includes end-of-line as a token.)

License

The code is licensed under CC-BY-NC license. See the LICENSE file for more details.

Acknowledgement

We thank Xavier Martinet for helping with cleaning the code. The data preprocessing scripts are downloaded from awd-lstm and transformer-XL repos. The adagrad_with_grad_clip.py is mostly adapted from PyTorch.

Owner
Meta Research
Meta Research
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
Findings of ACL 2021

Assessing Dialogue Systems with Distribution Distances [arXiv][code] We propose to measure the performance of a dialogue system by computing the distr

Yahui Liu 16 Feb 24, 2022
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Yongliang Shen 45 Nov 29, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
Implementation of legal QA system based on SentenceKoBART

LegalQA using SentenceKoBART Implementation of legal QA system based on SentenceKoBART How to train SentenceKoBART Based on Neural Search Engine Jina

Heewon Jeon(gogamza) 75 Dec 27, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021