This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Overview

Classifier-Balancing

This repository contains code for the paper:

Decoupling Representation and Classifier for Long-Tailed Recognition
Bingyi Kang, Saining Xie,Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, Yannis Kalantidis
[OpenReview] [Arxiv] [PDF] [Slides] [@ICLR]
Facebook AI Research, National University of Singapore
International Conference on Learning Representations (ICLR), 2020

Abstract

The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g., by loss re-weighting, data re-sampling, or transfer learning from head- to tail-classes, but all of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability with relative ease by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification.

 

 

If you find this code useful, consider citing our work:

@inproceedings{kang2019decoupling,
  title={Decoupling representation and classifier for long-tailed recognition},
  author={Kang, Bingyi and Xie, Saining and Rohrbach, Marcus and Yan, Zhicheng
          and Gordo, Albert and Feng, Jiashi and Kalantidis, Yannis},
  booktitle={Eighth International Conference on Learning Representations (ICLR)},
  year={2020}
}

Requirements

The code is based on https://github.com/zhmiao/OpenLongTailRecognition-OLTR.

Dataset

  • ImageNet_LT and Places_LT

    Download the ImageNet_2014 and Places_365.

  • iNaturalist 2018

    • Download the dataset following here.
    • cd data/iNaturalist18, Generate image name files with this script or use the existing ones [here].

Change the data_root in main.py accordingly.

Representation Learning

  1. Instance-balanced Sampling
python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml
  1. Class-balanced Sampling
python main.py --cfg ./config/ImageNet_LT/feat_balance.yaml
  1. Square-root Sampling
python main.py --cfg ./config/ImageNet_LT/feat_squareroot.yaml
  1. Progressively-balancing Sampling
python main.py --cfg ./config/ImageNet_LT/feat_shift.yaml

Test the joint learned classifier with representation learning

python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml --test 

Classifier Learning

  1. Nearest Class Mean classifier (NCM).
python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml --test --knn
  1. Classifier Re-training (cRT)
python main.py --cfg ./config/ImageNet_LT/cls_crt.yaml --model_dir ./logs/ImageNet_LT/models/resnext50_uniform_e90
python main.py --cfg ./config/ImageNet_LT/cls_crt.yaml --test
  1. Tau-normalization

Extract fatures

for split in train_split val test
do
  python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml --test --save_feat $split
done

Evaluation

for split in train val test
do
  python tau_norm.py --root ./logs/ImageNet_LT/models/resnext50_uniform_e90/ --type $split
done
  1. Learnable weight scaling (LWS)
python main.py --cfg ./config/ImageNet_LT/cls_lws.yaml --model_dir ./logs/ImageNet_LT/models/resnext50_uniform_e90
python main.py --cfg ./config/ImageNet_LT/cls_lws.yaml --test

Results and Models

ImageNet_LT

  • Representation learning

    Sampling Many Medium Few All Model
    Instance-Balanced 65.9 37.5 7.7 44.4 ResNeXt50
    Class-Balanced 61.8 40.1 15.5 45.1 ResNeXt50
    Square-Root 64.3 41.2 17.0 46.8 ResNeXt50
    Progressively-Balanced 61.9 43.2 19.4 47.2 ResNeXt50

    For other models trained with instance-balanced (natural) sampling:
    [ResNet50] [ResNet101] [ResNet152] [ResNeXt101] [ResNeXt152]

  • Classifier learning

    Classifier Many Medium Few All Model
    Joint 65.9 37.5 7.7 44.4 ResNeXt50
    NCM 56.6 45.3 28.1 47.3 ResNeXt50
    cRT 61.8 46.2 27.4 49.6 ResNeXt50
    Tau-normalization 59.1 46.9 30.7 49.4 ResNeXt50
    LWS 60.2 47.2 30.3 49.9 ResNeXt50

iNaturalist 2018

Places_LT

  • Representaion learning
    We provide a pretrained ResNet152 with instance-balanced (natural) sampling: [link]
  • Classifier learning
    We provide the cRT and LWS models based on above pretrained ResNet152 model as follows:
    [ResNet152(cRT)] [ResNet152(LWS)]

To test a pretrained model:
python main.py --cfg /path/to/config/file --model_dir /path/to/model/file --test

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree (here). Portions of the source code are from the OLTR project.

Owner
Facebook Research
Facebook Research
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021