A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

Overview

CLEVR Dataset Generation

This is the code used to generate the CLEVR dataset as described in the paper:

CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Fei-Fei Li, Larry Zitnick, Ross Girshick
Presented at CVPR 2017

Code and pretrained models for the baselines used in the paper can be found here.

You can use this code to render synthetic images and compositional questions for those images, like this:

Q: How many small spheres are there?
A: 2

Q: What number of cubes are small things or red metal objects?
A: 2

Q: Does the metal sphere have the same color as the metal cylinder?
A: Yes

Q: Are there more small cylinders than metal things?
A: No

Q: There is a cylinder that is on the right side of the large yellow object behind the blue ball; is there a shiny cube in front of it?
A: Yes

If you find this code useful in your research then please cite

@inproceedings{johnson2017clevr,
  title={CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning},
  author={Johnson, Justin and Hariharan, Bharath and van der Maaten, Laurens
          and Fei-Fei, Li and Zitnick, C Lawrence and Girshick, Ross},
  booktitle={CVPR},
  year={2017}
}

All code was developed and tested on OSX and Ubuntu 16.04.

Step 1: Generating Images

First we render synthetic images using Blender, outputting both rendered images as well as a JSON file containing ground-truth scene information for each image.

Blender ships with its own installation of Python which is used to execute scripts that interact with Blender; you'll need to add the image_generation directory to Python path of Blender's bundled Python. The easiest way to do this is by adding a .pth file to the site-packages directory of Blender's Python, like this:

echo $PWD/image_generation >> $BLENDER/$VERSION/python/lib/python3.5/site-packages/clevr.pth

where $BLENDER is the directory where Blender is installed and $VERSION is your Blender version; for example on OSX you might run:

echo $PWD/image_generation >> /Applications/blender/blender.app/Contents/Resources/2.78/python/lib/python3.5/site-packages/clevr.pth

You can then render some images like this:

cd image_generation
blender --background --python render_images.py -- --num_images 10

On OSX the blender binary is located inside the blender.app directory; for convenience you may want to add the following alias to your ~/.bash_profile file:

alias blender='/Applications/blender/blender.app/Contents/MacOS/blender'

If you have an NVIDIA GPU with CUDA installed then you can use the GPU to accelerate rendering like this:

blender --background --python render_images.py -- --num_images 10 --use_gpu 1

After this command terminates you should have ten freshly rendered images stored in output/images like these:


The file output/CLEVR_scenes.json will contain ground-truth scene information for all newly rendered images.

You can find more details about image rendering here.

Step 2: Generating Questions

Next we generate questions, functional programs, and answers for the rendered images generated in the previous step. This step takes as input the single JSON file containing all ground-truth scene information, and outputs a JSON file containing questions, answers, and functional programs for the questions in a single JSON file.

You can generate questions like this:

cd question_generation
python generate_questions.py

The file output/CLEVR_questions.json will then contain questions for the generated images.

You can find more details about question generation here.

Owner
Facebook Research
Facebook Research
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021