Scalable training for dense retrieval models.

Overview

Scalable implementation of dense retrieval.

Training on cluster

By default it trains locally:

PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py trainer.gpus=1

SLURM Training

To train the model on SLURM, run:

PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py -m trainer=slurm trainer.num_nodes=2 trainer.gpus=2

Reproduce DPR on 8 gpus

PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py -m --config-name nq.yaml  +hydra.launcher.name=dpr_stl_nq_reproduce

Generate embeddings on Wikipedia

PYTHONPATH=.:$PYTHONPATH python dpr_scale/generate_embeddings.py -m --config-name nq.yaml datamodule=generate datamodule.test_path=psgs_w100.tsv +task.ctx_embeddings_dir=<CTX_EMBEDDINGS_DIR> +task.checkpoint_path=<CHECKPOINT_PATH>

Get retrieval results

Currently this runs on 1 GPU. Use CTX_EMBEDDINGS_DIR from above.

PYTHONPATH=.:$PYTHONPATH python dpr_scale/run_retrieval.py --config-name nq.yaml trainer=gpu_1_host trainer.gpus=1 +task.output_path=<PATH_TO_OUTPUT_JSON> +task.ctx_embeddings_dir=<CTX_EMBEDDINGS_DIR> +task.checkpoint_path=<CHECKPOINT_PATH> +task.passages=psgs_w100.tsv datamodule.test_path=<PATH_TO_QUERIES_JSONL>

Generate query embeddings

Alternatively, query embedding generation and retrieval can be separated. After query embeddings are generated using the following command, the run_retrieval_fb.py or run_retrieval_multiset.py script can be used to perform retrieval.

PYTHONPATH=.:$PYTHONPATH python dpr_scale/generate_query_embeddings.py -m --config-name nq.yaml trainer.gpus=1 datamodule.test_path=<PATH_TO_QUERIES_JSONL> +task.ctx_embeddings_dir=<CTX_EMBEDDINGS_DIR> +task.checkpoint_path=<CHECKPOINT_PATH> +task.query_emb_output_path=<OUTPUT_TO_QUERY_EMB>

Get evaluation metrics for a given JSON output file

python dpr_scale/eval_dpr.py --retrieval <PATH_TO_OUTPUT_JSON> --topk 1 5 10 20 50 100 

Get evaluation metrics for MSMARCO

python dpr_scale/msmarco_eval.py ~data/msmarco/qrels.dev.small.tsv PATH_TO_OUTPUT_JSON

Domain-matched Pre-training Tasks for Dense Retrieval

Paper: https://arxiv.org/abs/2107.13602

The sections below provide links to datasets and pretrained models, as well as, instructions to prepare datasets, pretrain and fine-tune them.

Q&A Datasets

PAQ

Download the dataset from here

Conversational Datasets

You can download the dataset from the respective tables.

Reddit

File Download Link
train download
dev download

ConvAI2

File Download Link
train download
dev download

DSTC7

File Download Link
train download
dev download
test download

Prepare by downloading the tar ball linked here, and using the command below.

DSTC7_DATA_ROOT=<path_of_dir_where_the_data_is_extracted>
python dpr_scale/data_prep/prep_conv_datasets.py \
    --dataset dstc7 \
    --in_file_path $DSTC7_DATA_ROOT/ubuntu_train_subtask_1_augmented.json \
    --out_file_path $DSTC7_DATA_ROOT/ubuntu_train.jsonl

Ubuntu V2

File Download Link
train download
dev download
test download

Prepare by downloading the tar ball linked here, and using the command below.

UBUNTUV2_DATA_ROOT=<path_of_dir_where_the_data_is_extracted>
python dpr_scale/data_prep/prep_conv_datasets.py \
    --dataset ubuntu2 \
    --in_file_path $UBUNTUV2_DATA_ROOT/train.csv \
    --out_file_path $UBUNTUV2_DATA_ROOT/train.jsonl

Pretraining DPR

Pretrained Checkpoints

Pretrained Model Dataset Download Link
BERT-base PAQ download
BERT-large PAQ download
BERT-base Reddit download
BERT-large Reddit download
RoBERTa-base Reddit download
RoBERTa-large Reddit download

Pretraining on PAQ dataset

DPR_ROOT=<path_of_your_repo's_root>
MODEL="bert-large-uncased"
NODES=8
BSZ=16
MAX_EPOCHS=20
LR=1e-5
TIMOUT_MINS=4320
EXP_DIR=<path_of_the_experiment_dir>
TRAIN_PATH=<path_of_the_training_data_file>
mkdir -p ${EXP_DIR}/logs
PYTHONPATH=$DPR_ROOT python ${DPR_ROOT}/dpr_scale/main.py -m \
    --config-dir ${DPR_ROOT}/dpr_scale/conf \
    --config-name nq.yaml \
    hydra.launcher.timeout_min=$TIMOUT_MINS \
    hydra.sweep.dir=${EXP_DIR} \
    trainer.num_nodes=${NODES} \
    task.optim.lr=${LR} \
    task.model.model_path=${MODEL} \
    trainer.max_epochs=${MAX_EPOCHS} \
    datamodule.train_path=$TRAIN_PATH \
    datamodule.batch_size=${BSZ} \
    datamodule.num_negative=1 \
    datamodule.num_val_negative=10 \
    datamodule.num_test_negative=50 > ${EXP_DIR}/logs/log.out 2> ${EXP_DIR}/logs/log.err &

Pretraining on Reddit dataset

# Use a batch size of 16 for BERT and RoBERTa base models.
BSZ=4
NODES=8
MAX_EPOCHS=5
WARMUP_STEPS=10000
LR=1e-5
MODEL="roberta-large"
EXP_DIR=<path_of_the_experiment_dir>
PYTHONPATH=. python dpr_scale/main.py -m \
    --config-dir ${DPR_ROOT}/dpr_scale/conf \
    --config-name reddit.yaml \
    hydra.launcher.nodes=${NODES} \
    hydra.sweep.dir=${EXP_DIR} \
    trainer.num_nodes=${NODES} \
    task.optim.lr=${LR} \
    task.model.model_path=${MODEL} \
    trainer.max_epochs=${MAX_EPOCHS} \
    task.warmup_steps=${WARMUP_STEPS} \
    datamodule.batch_size=${BSZ} > ${EXP_DIR}/logs/log.out 2> ${EXP_DIR}/logs/log.err &

Fine-tuning DPR on downstream tasks/datasets

Fine-tune the pretrained PAQ checkpoint

# You can also try 2e-5 or 5e-5. Usually these 3 learning rates work best.
LR=1e-5
# Use a batch size of 32 for BERT and RoBERTa base models.
BSZ=12
MODEL="bert-large-uncased"
MAX_EPOCHS=40
WARMUP_STEPS=1000
NODES=1
PRETRAINED_CKPT_PATH=<path_of_checkpoint_pretrained_on_reddit>
EXP_DIR=<path_of_the_experiment_dir>
PYTHONPATH=. python dpr_scale/main.py -m \
    --config-dir ${DPR_ROOT}/dpr_scale/conf \
    --config-name nq.yaml \
    hydra.launcher.name=${NAME} \
    hydra.sweep.dir=${EXP_DIR} \
    trainer.num_nodes=${NODES} \
    trainer.max_epochs=${MAX_EPOCHS} \
    datamodule.num_negative=1 \
    datamodule.num_val_negative=25 \
    datamodule.num_test_negative=50 \
    +trainer.val_check_interval=150 \
    task.warmup_steps=${WARMUP_STEPS} \
    task.optim.lr=${LR} \
    task.pretrained_checkpoint_path=$PRETRAINED_CKPT_PATH \
    task.model.model_path=${MODEL} \
    datamodule.batch_size=${BSZ} > ${EXP_DIR}/logs/log.out 2> ${EXP_DIR}/logs/log.err &

Fine-tune the pretrained Reddit checkpoint

Batch sizes that worked on Volta 32GB GPUs for respective model and datasets.

Model Dataset Batch Size
BERT/RoBERTa base ConvAI2 64
RBERT/RoBERTa base ConvAI2 16
BERT/RoBERTa base DSTC7 24
BERT/RoBERTa base DSTC7 8
BERT/RoBERTa base Ubuntu V2 64
BERT/RoBERTa large Ubuntu V2 16
# Change the config file name to convai2.yaml or dstc7.yaml for the respective datasets.
CONFIG_FILE_NAME=ubuntuv2.yaml
# You can also try 2e-5 or 5e-5. Usually these 3 learning rates work best.
LR=1e-5
BSZ=16
NODES=1
MAX_EPOCHS=5
WARMUP_STEPS=10000
MODEL="roberta-large"
PRETRAINED_CKPT_PATH=<path_of_checkpoint_pretrained_on_reddit>
EXP_DIR=<path_of_the_experiment_dir>
PYTHONPATH=${DPR_ROOT} python ${DPR_ROOT}/dpr_scale/main.py -m \
    --config-dir=${DPR_ROOT}/dpr_scale/conf \
    --config-name=$CONFIG_FILE_NAME \
    hydra.launcher.nodes=${NODES} \
    hydra.sweep.dir=${EXP_DIR} \
    trainer.num_nodes=${NODES} \
    trainer.max_epochs=${MAX_EPOCHS} \
    +trainer.val_check_interval=150 \
    task.pretrained_checkpoint_path=$PRETRAINED_CKPT_PATH \
    task.warmup_steps=${WARMUP_STEPS} \
    task.optim.lr=${LR} \
    task.model.model_path=$MODEL \
    datamodule.batch_size=${BSZ} > ${EXP_DIR}/logs/log.out 2> ${EXP_DIR}/logs/log.err &

License

dpr-scale is CC-BY-NC 4.0 licensed as of now.

Owner
Facebook Research
Facebook Research
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022