MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Related tags

Deep Learningminihack
Overview

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack Environments

MiniHack is a sandbox framework for easily designing rich and diverse environments for Reinforcement Learning (RL). Based on the game of NetHack, arguably the hardest grid-based game in the world, MiniHack uses the NetHack Learning Environment (NLE) to communicate with the game and provide a convenient interface for customly created RL testbeds.

MiniHack already comes with a large list of challenging tasks. However, it is primarily built for easily designing new ones. The motivation behind MiniHack is to be able to perform RL experiments in a controlled setting while being able to increasingly scale the complexity of the tasks.

To this end, MiniHack leverages the description files of NetHack. The description files (or des-files) are human-readable specifications of levels: distributions of grid layouts together with monsters, objects on the floor, dungeon features, etc. The des-files can be compiled into binary using the NetHack level compiler, and MiniHack maps them to Gym environments. We refer users to our brief overview, detailed tutorial, or interactive notebook for further information on des-files.

Our documentation will walk you through everything you need to know about MiniHack, step-by-step, including information on how to get started, configure environments or design new ones, train baseline agents, and much more.

Installation

MiniHack is available on pypi and can be installed as follows:

pip install minihack

We advise using a conda environment for this:

conda create -n minihack python=3.8
conda activate minihack
pip install minihack

NOTE: NLE requires cmake>=3.15 to be installed when building the package. Check out here how to install it on MacOS and Ubuntu 18.04. Windows users should use Docker.

NOTE: Baseline agents have separate installation instructions. See here for more details.

Extending MiniHack

If you wish to extend MiniHack, please install the package as follows:

git clone https://github.com/facebookresearch/minihack
cd minihack
pip install -e ".[dev]"
pre-commit install

Docker

We have provided several Dockerfiles for building images with pre-installed MiniHack. Please follow the instructions described here.

Trying out MiniHack

MiniHack uses the popular Gym interface for the interactions between the agent and the environment. A pre-registered MiniHack environment can be used as follows:

import gym
import minihack
env = gym.make("MiniHack-River-v0")
env.reset() # each reset generates a new environment instance
env.step(1)  # move agent '@' north
env.render()

To see the list of all MiniHack environments, run:

python -m minihack.scripts.env_list

The following scripts allow to play MiniHack environments with a keyboard:

# Play the MiniHack in the Terminal as a human
python -m minihack.scripts.play --env MiniHack-River-v0

# Use a random agent
python -m minihack.scripts.play --env MiniHack-River-v0  --mode random

# Play the MiniHack with graphical user interface (gui)
python -m minihack.scripts.play_gui --env MiniHack-River-v0

NOTE: If the package has been properly installed one could run the scripts above with mh-envs, mh-play, and mh-guiplay commands.

Baseline Agents

In order to get started with MiniHack environments, we provide a variety of baselines agent integrations.

TorchBeast

A TorchBeast agent is bundled in minihack.agent.polybeast together with a simple model to provide a starting point for experiments. To install and train this agent, first install torchbeast by following the instructions here, then use the following commands:

pip install ".[polybeast]"
python -m minihack.agent.polybeast.polyhydra env=MiniHack-Room-5x5-v0 total_steps=100000

More information on running our TorchBeast agents, and instructions on how to reproduce the results of the paper, can be found here. The learning curves for all of our polybeast experiments can be accessed in our Weights&Biases repository.

RLlib

An RLlib agent is provided in minihack.agent.rllib, with a similar model to the torchbeast agent. This can be used to try out a variety of different RL algorithms. To install and train an RLlib agent, use the following commands:

pip install ".[rllib]"
python -m minihack.agent.rllib.train algo=dqn env=MiniHack-Room-5x5-v0 total_steps=1000000

More information on running RLlib agents can be found here.

Unsupervised Environment Design

MiniHack also enables research in Unsupervised Environment Design, whereby an adaptive task distribution is learned during training by dynamically adjusting free parameters of the task MDP. Check out the ucl-dark/paired repository for replicating the examples from the paper using the PAIRED.

Citation

If you use MiniHack in your work, please cite:

@inproceedings{samvelyan2021minihack,
  title={MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research},
  author={Mikayel Samvelyan and Robert Kirk and Vitaly Kurin and Jack Parker-Holder and Minqi Jiang and Eric Hambro and Fabio Petroni and Heinrich Kuttler and Edward Grefenstette and Tim Rockt{\"a}schel},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)},
  year={2021},
  url={https://openreview.net/forum?id=skFwlyefkWJ}
}

If you use our example ported environments, please cite the original papers: MiniGrid (see license, bib), Boxoban (see license, bib).

Contributions and Maintenance

We welcome contributions to MiniHack. If you are interested in contributing, please see this document. Our maintenance plan can be found here.

Papers using the MiniHack

Open a pull request to add papers.

Comments
  • Manual pickup multiple items

    Manual pickup multiple items

    🐛 Bug

    When autopickup=True the agent will attempt to pickup all the objects at a location. If I set autopickup=False, I can use the Command.PICKUP/, command to pickup the item, but if there are multiple items at that locations nothing happens. I don't see any message or prompt either. If this isn't a bug is there a work around?

    To Reproduce

    Steps to reproduce the behavior:

    1. Set autopickup=False
    2. Spawn two different items at a single spot
    3. Attempt to pickup using Command.PICKUP

    Expected behavior

    Nethack should return a prompt listing the objects available for pickup.

    Environment

    NLE version: 0.7.3
    PyTorch version: 1.10.0+cu113
    Is debug build: No
    CUDA used to build PyTorch: 11.3
    
    OS: Ubuntu 20.04.2 LTS
    GCC version: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
    CMake version: version 3.21.3
    
    Python version: 3.8
    Is CUDA available: Yes
    CUDA runtime version: Could not collect
    GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090
    Nvidia driver version: 495.29.05
    cuDNN version: Could not collect
    
    Versions of relevant libraries:
    [pip3] numpy==1.21.2
    [pip3] torch==1.10.0+cu113
    [pip3] torchtext==0.11.0
    [conda] Could not collect
    

    Additional context

    Could be a problem with nle? If this isn't a bug is there a work around?

    bug 
    opened by kolbytn 6
  • [BUG] Error creating environment or running mh-play (Mac OSX 12.6)

    [BUG] Error creating environment or running mh-play (Mac OSX 12.6)

    🐛 Bug

    Can't create environment or run play scripts in MacOSX 12.6

    To Reproduce

    Steps to reproduce the behavior:

    1. Install NLE 0.8.1 following workaround at https://github.com/facebookresearch/nle/issues/340
    2. pip install minihack
    3. mh-play leads to error: AttributeError: 'MiniHackRoom5x5Random' object has no attribute 'env'
    4. python -m minihack.scripts.play --env MiniHack-River-v0 --mode random leads to similar error: AttributeError: 'MiniHackRiver' object has no attribute 'env'

    Expected behavior

    Environment created successfully

    Environment

    MiniHack version: 0.1.2 NLE version: 0.8.1+103c667 Gym version: 0.21.0 PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A

    OS: Mac OSX 12.6 GCC version: Could not collect CMake version: version 3.24.2

    Python version: 3.8 Is CUDA available: N/A CUDA runtime version: Could not collect GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect

    Versions of relevant libraries: [pip3] numpy==1.23.3 [conda] Could not collect

    Additional context

    Used workaround for NLE install described here: https://github.com/facebookresearch/nle/issues/340 nle-play works as expected mh-env returns list of environments as expected. Same error encountered with python 3.9 & 3.10, and minihack version 0.1.3 (not tested all combinations)

    bug 
    opened by tmssmith 5
  • #64 issue solved: Fix access from base.py to nethack _vardir

    #64 issue solved: Fix access from base.py to nethack _vardir

    #64 issue solved: Fix access from base.py to nethack _vardir. I tested the modification on my local project. Seem that before this modification the library wasn't able to run because there was an access to self.env._vardir instead of self.nethack._vardir.

    CLA Signed core 
    opened by GeremiaPompei 3
  • [BUG] minihack.scripts.play don't work on Debian 11

    [BUG] minihack.scripts.play don't work on Debian 11

    🐛 Bug

    After installing minihack+nle to Debian 11 the following commands work:

    import gym import minihack env = gym.make("MiniHack-River-v0") env.reset() # each reset generates a new environment instance env.step(1) # move agent '@' north env.render()

    But when running

    python3 -m minihack.scripts.play --env MiniHack-River-v0

    The program fails to errors.

    To Reproduce

    Steps to reproduce the behavior:

    1. Install Debian 11. Install minihack+nle (+deps) using pip install/apt-get commands.
    2. python3 -m minihack.scripts.play --env MiniHack-River-v0

    Error messages/traceback:

    Traceback (most recent call last): File "/usr/lib/python3.9/runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.9/runpy.py", line 87, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.9/dist-packages/minihack/scripts/play.py", line 334, in main() File "/usr/local/lib/python3.9/dist-packages/minihack/scripts/play.py", line 330, in main play(**vars(flags)) File "/usr/local/lib/python3.9/dist-packages/minihack/scripts/play.py", line 123, in play print("Available actions:", env._actions) File "/home/optimus/.local/lib/python3.9/site-packages/gym/core.py", line 235, in getattr raise AttributeError( AttributeError: attempted to get missing private attribute '_actions'

    Expected behavior

    One should be able to play minihack using keyboard commands.

    Environment

    Collecting environment information...

    MiniHack version: 0.1.1 NLE version: 0.7.3 PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A

    OS: Debian GNU/Linux 11 (bullseye) GCC version: (Debian 10.2.1-6) 10.2.1 20210110 CMake version: version 3.18.4

    Python version: 3.9 Is CUDA available: N/A CUDA runtime version: Could not collect GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect

    Versions of relevant libraries: [pip3] msgpack-numpy==0.4.7.1 [pip3] numpy==1.19.5 [conda] Could not collect

    Additional context

    No Anaconda installed.

    bug 
    opened by cslr 3
  • Is it possible to generate pixel images (ideally cropped) in a desired resolution?

    Is it possible to generate pixel images (ideally cropped) in a desired resolution?

    Right now, I use opencv as

    env = gym.make(env, observation_keys=("pixel_crop",), penalty_step=0.0)
    obs_dict, reward, done, info = env.step(action)
    image = cv2.resize(obs_dict['pixel_crop'], dsize=(64, 64), interpolation=cv2.INTER_LINEAR)
    

    I'm wondering if it's possible to avoid this resizing by just directly rendering in the desired resolution.

    enhancement 
    opened by wcarvalho 2
  • [BUG] Broken monster generation from des file

    [BUG] Broken monster generation from des file

    🐛 Bug

    I'm trying to generate different levels using des files. It works fine when I'm using just map. But MONSTER brakes env: instead of my map it returns some different random levels

    To Reproduce

    Steps to reproduce the behavior:

    1. Generate env with MONSTER
    2. Try to render it with get_des_file_rendering

    this generates random levels:

    from minihack.tiles.rendering import get_des_file_rendering
    import IPython.display
    def render_des_file(des_file, **kwargs):
        image = get_des_file_rendering(des_file, **kwargs)
        IPython.display.display(image)
    
    des = """
    MAZE: "mylevel", ' '
    FLAGS:premapped
    GEOMETRY:center,center
    
    MAP
    .....
    .....
    L....
    ..L..
    |....
    ENDMAP
    
    STAIR:(4, 4),down
    BRANCH: (0,0,0,0),(1,1,1,1)
    MONSTER:'v',"dust vortex",(0,4)
    """
    render_des_file(des, n_images=2, full_screen=False)
    

    this works ok:

    des = """
    MAZE: "mylevel", ' '
    FLAGS:premapped
    GEOMETRY:center,center
    
    MAP
    .....
    .....
    L....
    ..L..
    |....
    ENDMAP
    
    STAIR:(4, 4),down
    BRANCH: (0,0,0,0),(1,1,1,1)
    """
    render_des_file(des, n_images=2, full_screen=False)
    

    Expected behavior

    Env consists of map described is des file

    Environment

    Collecting environment information... MiniHack version: 0.1.3 NLE version: 0.8.1 Gym version: 0.21.0 PyTorch version: 1.12.0+cu113 Is debug build: No CUDA used to build PyTorch: 11.3

    OS: Ubuntu 18.04.5 LTS GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 CMake version: version 3.22.5

    Python version: 3.7 Is CUDA available: Yes CUDA runtime version: Could not collect GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 460.32.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5 /usr/lib/x86_64-linux-gnu/libcudnn.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.0.5

    Versions of relevant libraries: [pip3] numpy==1.21.6 [pip3] torch==1.12.0+cu113 [pip3] torchaudio==0.12.0+cu113 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.13.0 [pip3] torchvision==0.13.0+cu113 [conda] Could not collect

    bug 
    opened by salamantos 2
  • [BUG] Inconsistent environment seeding

    [BUG] Inconsistent environment seeding

    🐛 Bug

    Seeding doesn't consistently generate the same environment.

    To Reproduce

    Steps to reproduce the behavior:

    1. Run this snippet repeatedly:
    env = gym.make("MiniHack-KeyRoom-Fixed-S5-v0",
        observation_keys=("pixel", "colors", "chars", "glyphs", "tty_chars"),
        seeds=(42, 42, False))
    env.seed(42, 42, False)
    obs = env.reset()
    env.render()
    print(env.get_seeds())
    

    Sometimes this prints

    Hello Agent, welcome to NetHack!  You are a chaotic male human Rogue.           
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                           ----                                     
                                           |..|                                     
                                           +(.|                                     
                                        ----..|                                     
                                        |.....|                                     
                                        |...@.|                                     
                                        -------                                     
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
    Agent the Footpad              St:18/02 Dx:18 Co:13 In:8 Wi:9 Ch:7 Chaotic S:0  
    Dlvl:1 $:0 HP:12(12) Pw:2(2) AC:7 Xp:1/0                                        
    (42, 42, False)
    

    But also occasionally prints (note the printed seeds are (0, 0, False)):

    Hello Agent, welcome to NetHack!  You are a chaotic male human Rogue.           
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                           ----                                     
                                           |@.|                                     
                                           +..|                                     
                                           -..|                                     
                                            ..|                                     
                                            ..|                                     
                                           ----                                     
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
                                                                                    
    Agent the Footpad              St:14 Dx:18 Co:14 In:11 Wi:11 Ch:8 Chaotic S:0   
    Dlvl:1 $:0 HP:12(12) Pw:2(2) AC:7 Xp:1/0                                        
    (0, 0, False)
    

    Expected behavior

    Same positions of agent/key, and same seeds being printed by env.get_seeds()

    Environment

    
    MiniHack version: 0.1.3+57ca418
    NLE version: 0.8.1
    Gym version: 0.21.0
    PyTorch version: 1.11.0+cu102
    Is debug build: No
    CUDA used to build PyTorch: 10.2
    
    OS: Ubuntu 20.04.3 LTS
    GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
    CMake version: version 3.23.1
    
    Python version: 3.8
    Is CUDA available: Yes
    CUDA runtime version: Could not collect
    GPU models and configuration:
    GPU 0: NVIDIA GeForce RTX 3080
    GPU 1: NVIDIA GeForce RTX 3080
    
    Nvidia driver version: 510.47.03
    cuDNN version: Could not collect
    
    Versions of relevant libraries:
    [pip3] numpy==1.21.6
    [pip3] torch==1.11.0
    [conda] torch                     1.11.0                   pypi_0    pypi
    
    bug 
    opened by jlin816 2
  • [FEATURE] Suggested MiniHack Editor Webpage tweaks

    [FEATURE] Suggested MiniHack Editor Webpage tweaks

    🚀 Feature

    Could we populate the level with a standard level that demonstrates the individual building blocks (like the one used on the readme)? Could we also have a "clear level" button to get to the empty level that is currently shown when calling https://minihack-editor.github.io/

    enhancement 
    opened by rockt 2
  • [BUG] No module named 'minihack.version' when importing

    [BUG] No module named 'minihack.version' when importing

    When installing via pip, you get an bug after importing: "ModuleNotFoundError: No module named 'minihack.version'". This can be resolved by adding a file "version.py" with the correct info to the install directory. (version = '0.1.3+4c398d4' git_version = '4c398d480eac26883104e867280d1d3ddbcb9a20' ).

    bug 
    opened by nesou2 2
  • With it as-is, I get 'can only concatenate list (not tuple) to list'

    With it as-is, I get 'can only concatenate list (not tuple) to list'

    I can't currently run the fb-internal minihack due to this bug. Here's the obvious fix; if there's one that's more suitable, let me know.

    Basically what happened here was that when I switched from the public minihack to the fb internal one, I started getting this concat issue. I'm not 100% sure what changed, but the basic issue is that before, a list was acceptable as inputs to the observation keys, but now it isn't. By casting to the consistent type, both should be acceptable.

    CLA Signed 
    opened by SamNPowers 2
  • [BUG] Minihack does not work with NLE v0.9.0

    [BUG] Minihack does not work with NLE v0.9.0

    🐛 Bug

    Minihack does not work with NLE v0.9.0

    To Reproduce

    Follow the Trying Out MiniHack example

    [/usr/local/lib/python3.7/dist-packages/minihack/base.py](https://localhost:8080/#) in _patch_nhdat(self, des_file)
        366         """
        367         if not des_file.endswith(".des"):
    --> 368             fpath = os.path.join(self.env._vardir, "mylevel.des")
        369             # If the des-file is passed as a string
        370             with open(fpath, "w") as f:
    
    AttributeError: 'MiniHackRiver' object has no attribute 'env'
    
    bug 
    opened by ngoodger 1
  • [FEATURE] monobeast baseline implementation

    [FEATURE] monobeast baseline implementation

    🚀 Feature

    current polybeast implementation has most code written in C++, requesting for mnonobeast implementation for more clarity

    Motivation

    readability/flexibility

    Pitch

    monobeast implementation will offfer more readability and flexibility

    Alternatives

    N/A

    Additional context

    N/A

    enhancement 
    opened by Andrewzh112 0
Releases(v0.1.4)
  • v0.1.4(Dec 9, 2022)

    Installing MiniHack

    Install with pip: pip install minihack==0.1.4.

    See README.md for further instructions.

    New in MiniHack v0.1.4

    • MiniHack version 0.1.4 (#67, @samvelyan)
    • Gym issue fix (#58, @samvelyan)
    • pushing the fix for more height in the logo (#49, @Bam4d)
    • [WIP] Bam4d/level editor (#46, @Bam4d)

    📝 Documentation

    • Deleted level editor site code (#50, @samvelyan)

    🔨 Maintenance

    • Fixing the seeding issue (#68, @samvelyan)
    • Fixing the NetHack variable renaming and _underscore access recently introduced in NLE==0.9.0 (#66, @samvelyan)

    🎡 Environment

    • Fixing the NetHack variable renaming and _underscore access recently introduced in NLE==0.9.0 (#66, @samvelyan)
    • Fix forced actions (#55, @ian-cannon)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Mar 14, 2022)

    Installing MiniHack

    Install with pip: pip install minihack==0.1.3.

    See README.md for further instructions.

    New in MiniHack v0.1.3

    📝 Documentation

    • MiniHack Environment Zoo (#38, @samvelyan)

    🔨 Maintenance

    • A flag for including pet to the game (#40, @samvelyan)

    🎡 Environment

    • Turned autopickup off for ExploreMaze envs (#45, @samvelyan)
    • Fixing boxoban level data path (#42, @samvelyan)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Nov 30, 2021)

    Installing MiniHack

    Install with pip: pip install minihack==0.1.2.

    See README.md for further instructions.

    New in MiniHack v0.1.2

    • Cached Environment Wrapper (#33, @samvelyan)
    • Printing the gym version in the collect_env script (#30, @samvelyan)
    • Update README.md (#24, @samvelyan)
    • Updating the PR labeler and Release Drafter (#23, @samvelyan)

    📝 Documentation

    • Fixes to the documentation (#37, @samvelyan)
    • Updating docs (#25, @samvelyan)
    • Fixed Typo (#22, @mohamadmansourX)

    🔨 Maintenance

    • Bump the MiniHack and NLE versions (#36, @samvelyan)
    • Supporting gym version 0.21.0 (#31, @samvelyan)

    🎡 Environment

    • Fixing seeding in MiniGrid (#34, @samvelyan)
    • Supporting gym version 0.21.0 (#31, @samvelyan)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Sep 30, 2021)

    Installing MiniHack

    Install with pip: pip install minihack==0.1.1.

    See README.md for further instructions.

    New in MiniHack v0.1.1

    • Added a workflow for testing and pushing the releases to PyPI (#21, @samvelyan)
    • Importing Pillow whenever needed. (#20, @samvelyan)
    • Release drafter GitHub workflow (#19, @samvelyan)
    • Being able to save gifs when evaluating pre-trained agents (#18, @samvelyan)
    • Updating README (#16, @samvelyan)
    • Update MANIFEST.in (#15, @samvelyan)

    📝 Documentation

    • Updating REAMDE (#17, @samvelyan)
    Source code(tar.gz)
    Source code(zip)
Owner
Facebook Research
Facebook Research
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022