PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

Related tags

Deep Learningmoco
Overview

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

This is a PyTorch implementation of the MoCo paper:

@Article{he2019moco,
  author  = {Kaiming He and Haoqi Fan and Yuxin Wu and Saining Xie and Ross Girshick},
  title   = {Momentum Contrast for Unsupervised Visual Representation Learning},
  journal = {arXiv preprint arXiv:1911.05722},
  year    = {2019},
}

It also includes the implementation of the MoCo v2 paper:

@Article{chen2020mocov2,
  author  = {Xinlei Chen and Haoqi Fan and Ross Girshick and Kaiming He},
  title   = {Improved Baselines with Momentum Contrastive Learning},
  journal = {arXiv preprint arXiv:2003.04297},
  year    = {2020},
}

Preparation

Install PyTorch and ImageNet dataset following the official PyTorch ImageNet training code.

This repo aims to be minimal modifications on that code. Check the modifications by:

diff main_moco.py <(curl https://raw.githubusercontent.com/pytorch/examples/master/imagenet/main.py)
diff main_lincls.py <(curl https://raw.githubusercontent.com/pytorch/examples/master/imagenet/main.py)

Unsupervised Training

This implementation only supports multi-gpu, DistributedDataParallel training, which is faster and simpler; single-gpu or DataParallel training is not supported.

To do unsupervised pre-training of a ResNet-50 model on ImageNet in an 8-gpu machine, run:

python main_moco.py \
  -a resnet50 \
  --lr 0.03 \
  --batch-size 256 \
  --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

This script uses all the default hyper-parameters as described in the MoCo v1 paper. To run MoCo v2, set --mlp --moco-t 0.2 --aug-plus --cos.

Note: for 4-gpu training, we recommend following the linear lr scaling recipe: --lr 0.015 --batch-size 128 with 4 gpus. We got similar results using this setting.

Linear Classification

With a pre-trained model, to train a supervised linear classifier on frozen features/weights in an 8-gpu machine, run:

python main_lincls.py \
  -a resnet50 \
  --lr 30.0 \
  --batch-size 256 \
  --pretrained [your checkpoint path]/checkpoint_0199.pth.tar \
  --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

Linear classification results on ImageNet using this repo with 8 NVIDIA V100 GPUs :

pre-train
epochs
pre-train
time
MoCo v1
top-1 acc.
MoCo v2
top-1 acc.
ResNet-50 200 53 hours 60.8±0.2 67.5±0.1

Here we run 5 trials (of pre-training and linear classification) and report mean±std: the 5 results of MoCo v1 are {60.6, 60.6, 60.7, 60.9, 61.1}, and of MoCo v2 are {67.7, 67.6, 67.4, 67.6, 67.3}.

Models

Our pre-trained ResNet-50 models can be downloaded as following:

epochs mlp aug+ cos top-1 acc. model md5
MoCo v1 200 60.6 download b251726a
MoCo v2 200 67.7 download 59fd9945
MoCo v2 800 71.1 download a04e12f8

Transferring to Object Detection

See ./detection.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

See Also

Owner
Meta Research
Meta Research
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022