NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

Related tags

Deep Learningnuanced
Overview

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions

Overview

NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns. The dataset focuses on realistic settings where user preferences are extracted from real-world Yelp Open Dataset and paraphrased into natural user responses.

Existing conversational systems are mostly agent-centric, which assumes the user utterances would closely follow the system ontology (for NLU or dialogue state tracking). However, in real-world scenarios, it is highly desirable that the users can speak freely in their own way. It is extremely hard, if not impossible, for the users to adapt to the unknown system ontology.

In this work, we attempt to build a user-centric dialogue system. As there is no clean mapping for a user’s free form utterance to an ontology, we first model the user preferences as estimated distributions over the system ontology and map the users’ utterances to such distributions. Learning such a mapping poses new challenges on reasoning over existing knowledge, ranging from factoid knowledge, commonsense knowledge to the users’ own situations. To this end, we build a new dataset named NUANCED that focuses on such realistic settings for conversational recommendation. We believe NUANCED can serve as a valuable resource to push existing research from the agent-centric system to the user-centric system.

For more details, please refer to the following two papers:
NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions
User Memory Reasoning for Conversational Recommendation

Examples of traditional dataset and NUANCED

Examples of traditional dataset and NUANCED: in real-world scenarios, the free form user utterances often mismatch with system ontology. In NUANCED, we model the user preferences (or dialogue state) as distributions over the ontology, therefore to allow mapping of entities unknown to the system to multiple values and slots for efficient conversation.

Data

In this data release, we have included both the nuanced version where user preferences are mapped to an estimated distribution and the coarse version where user preferences are mapped to discrete slot labels according to system ontology.

  • Folder data_dist: the nuanced version;
  • Folder data_discrete: the coarse version with 0-1 labels;
  • meta.json: ontology for this restaurant domain;

Format for the dataset: A list of dictionaries, with each dictionary as one dialogue of the following important fields:

  • "dialogue": a list of dialog turns. Each turn has the following fields:
  • "role": user or assistant
  • "text": user utterance or system response
  • "dialog_acts": acts of this turn
  • "slots": slots involved in this turn
  • "dist": for user turn, the preference distribution
  • "strategy": strategy 1 means the user utterance does not have grounded ontology terms (implicit reasoning), strategy 2 means the user utterance has grounded ontology terms

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following articles (pdf, pdf):

@article{chen2020nuanced,
  title={NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions},
  author={Chen, Zhiyu and Liu, Honglei and Xu, Hu and Moon, Seungwhan and Zhou, Hao and Liu, Bing},
  journal={arXiv preprint arXiv:2010.12758},
  year={2020}
}
@inproceedings{xu2020user,
  title={User Memory Reasoning for Conversational Recommendation},
  author={Xu, Hu and Moon, Seungwhan and Liu, Honglei and Liu, Bing and Shah, Pararth and Philip, S Yu},
  booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
  pages={5288--5308},
  year={2020}
}

License

NUANCED is released under CC-BY-NC-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022