NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

Related tags

Deep Learningnuanced
Overview

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions

Overview

NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns. The dataset focuses on realistic settings where user preferences are extracted from real-world Yelp Open Dataset and paraphrased into natural user responses.

Existing conversational systems are mostly agent-centric, which assumes the user utterances would closely follow the system ontology (for NLU or dialogue state tracking). However, in real-world scenarios, it is highly desirable that the users can speak freely in their own way. It is extremely hard, if not impossible, for the users to adapt to the unknown system ontology.

In this work, we attempt to build a user-centric dialogue system. As there is no clean mapping for a user’s free form utterance to an ontology, we first model the user preferences as estimated distributions over the system ontology and map the users’ utterances to such distributions. Learning such a mapping poses new challenges on reasoning over existing knowledge, ranging from factoid knowledge, commonsense knowledge to the users’ own situations. To this end, we build a new dataset named NUANCED that focuses on such realistic settings for conversational recommendation. We believe NUANCED can serve as a valuable resource to push existing research from the agent-centric system to the user-centric system.

For more details, please refer to the following two papers:
NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions
User Memory Reasoning for Conversational Recommendation

Examples of traditional dataset and NUANCED

Examples of traditional dataset and NUANCED: in real-world scenarios, the free form user utterances often mismatch with system ontology. In NUANCED, we model the user preferences (or dialogue state) as distributions over the ontology, therefore to allow mapping of entities unknown to the system to multiple values and slots for efficient conversation.

Data

In this data release, we have included both the nuanced version where user preferences are mapped to an estimated distribution and the coarse version where user preferences are mapped to discrete slot labels according to system ontology.

  • Folder data_dist: the nuanced version;
  • Folder data_discrete: the coarse version with 0-1 labels;
  • meta.json: ontology for this restaurant domain;

Format for the dataset: A list of dictionaries, with each dictionary as one dialogue of the following important fields:

  • "dialogue": a list of dialog turns. Each turn has the following fields:
  • "role": user or assistant
  • "text": user utterance or system response
  • "dialog_acts": acts of this turn
  • "slots": slots involved in this turn
  • "dist": for user turn, the preference distribution
  • "strategy": strategy 1 means the user utterance does not have grounded ontology terms (implicit reasoning), strategy 2 means the user utterance has grounded ontology terms

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following articles (pdf, pdf):

@article{chen2020nuanced,
  title={NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions},
  author={Chen, Zhiyu and Liu, Honglei and Xu, Hu and Moon, Seungwhan and Zhou, Hao and Liu, Bing},
  journal={arXiv preprint arXiv:2010.12758},
  year={2020}
}
@inproceedings{xu2020user,
  title={User Memory Reasoning for Conversational Recommendation},
  author={Xu, Hu and Moon, Seungwhan and Liu, Honglei and Liu, Bing and Shah, Pararth and Philip, S Yu},
  booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
  pages={5288--5308},
  year={2020}
}

License

NUANCED is released under CC-BY-NC-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022