Approximate Nearest Neighbor Search for Sparse Data in Python!

Related tags

Data Analysispysparnn
Overview

PySparNN

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Out of the box, PySparNN supports Cosine Distance (i.e. 1 - cosine_similarity).

PySparNN benefits:

  • Designed to be efficient on sparse data (memory & cpu).
  • Implemented leveraging existing python libraries (scipy & numpy).
  • Easily extended with other metrics: Manhattan, Euclidian, Jaccard, etc.
  • Supports incremental insertion of elements.

If your data is NOT SPARSE - please consider faiss or annoy. They use similar methods and I am a big fan of both. You should expect better performance on dense vectors from both of those projects.

The most comparable library to PySparNN is scikit-learn's LSHForest module. As of this writing, PySparNN is ~4x faster on the 20newsgroups dataset (as a sparse vector). A more robust benchmarking on sparse data is desired. Here is the comparison. Here is another comparison on the larger Enron email dataset.

Example Usage

Simple Example

import pysparnn.cluster_index as ci

import numpy as np
from scipy.sparse import csr_matrix

features = np.random.binomial(1, 0.01, size=(1000, 20000))
features = csr_matrix(features)

# build the search index!
data_to_return = range(1000)
cp = ci.MultiClusterIndex(features, data_to_return)

cp.search(features[:5], k=1, return_distance=False)
>> [[0], [1], [2], [3], [4]]

Text Example

import pysparnn.cluster_index as ci

from sklearn.feature_extraction.text import TfidfVectorizer

data = [
    'hello world',
    'oh hello there',
    'Play it',
    'Play it again Sam',
]    

tv = TfidfVectorizer()
tv.fit(data)

features_vec = tv.transform(data)

# build the search index!
cp = ci.MultiClusterIndex(features_vec, data)

# search the index with a sparse matrix
search_data = [
    'oh there',
    'Play it again Frank'
]

search_features_vec = tv.transform(search_data)

cp.search(search_features_vec, k=1, k_clusters=2, return_distance=False)
>> [['oh hello there'], ['Play it again Sam']]

Requirements

PySparNN requires numpy and scipy. Tested with numpy 1.11.2 and scipy 0.18.1.

Installation

# clone pysparnn
cd pysparnn 
pip install -r requirements.txt 
python setup.py install

How PySparNN works

Searching for a document in an collection of D documents is naively O(D) (assuming documents are constant sized).

However! we can create a tree structure where the first level is O(sqrt(D)) and each of the leaves are also O(sqrt(D)) - on average.

We randomly pick sqrt(D) candidate items to be in the top level. Then -- each document in the full list of D documents is assigned to the closest candidate in the top level.

This breaks up one O(D) search into two O(sqrt(D)) searches which is much much faster when D is big!

This generalizes to h levels. The runtime becomes: O(h * h_root(D))

Further Information

http://nlp.stanford.edu/IR-book/html/htmledition/cluster-pruning-1.html

See the CONTRIBUTING file for how to help out.

License

PySparNN is BSD-licensed. We also provide an additional patent grant.

Owner
Meta Research
Meta Research
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
PyClustering is a Python, C++ data mining library.

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each

Andrei Novikov 1k Jan 05, 2023
SparseLasso: Sparse Solutions for the Lasso

SparseLasso: Sparse Solutions for the Lasso Introduction SparseLasso provides a Scikit-Learn based estimation of the Lasso with cross-validation tunin

Gabriel Okasa 1 Nov 08, 2021
Python tools for querying and manipulating BIDS datasets.

PyBIDS is a Python library to centralize interactions with datasets conforming BIDS (Brain Imaging Data Structure) format.

Brain Imaging Data Structure 180 Dec 18, 2022
Mining the Stack Overflow Developer Survey

Mining the Stack Overflow Developer Survey A prototype data mining application to compare the accuracy of decision tree and random forest regression m

1 Nov 16, 2021
4CAT: Capture and Analysis Toolkit

4CAT: Capture and Analysis Toolkit 4CAT is a research tool that can be used to analyse and process data from online social platforms. Its goal is to m

Digital Methods Initiative 147 Dec 20, 2022
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
Stream-Kafka-ELK-Stack - Weather data streaming using Apache Kafka and Elastic Stack.

Streaming Data Pipeline - Kafka + ELK Stack Streaming weather data using Apache Kafka and Elastic Stack. Data source: https://openweathermap.org/api O

Felipe Demenech Vasconcelos 2 Jan 20, 2022
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023
Synthetic Data Generation for tabular, relational and time series data.

An Open Source Project from the Data to AI Lab, at MIT Website: https://sdv.dev Documentation: https://sdv.dev/SDV User Guides Developer Guides Github

The Synthetic Data Vault Project 1.2k Jan 07, 2023
This python script allows you to manipulate the audience data from Sl.ido surveys

Slido-Automated-VoteBot This python script allows you to manipulate the audience data from Sl.ido surveys Since Slido blocks interference from automat

Pranav Menon 1 Jan 24, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022