ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

Overview

ReConsider

ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

The technical details are described in:

@inproceedings{iyer2020reconsider,
 title={RECONSIDER: Re-Ranking using Span-Focused Cross-Attention for Open Domain Question Answering},
 author={Iyer, Srinivasan and Min, Sewon and Mehdad, Yashar and Yih, Wen-tau},
 booktitle={NAACL},
 year={2021}
}

https://arxiv.org/abs/2010.10757

LICENSE

The majority of ReConsider is licensed under CC-BY-NC, however portions of the project are available under separate license terms: huggingface transformers and HotpotQA Utils are licensed under the Apache 2.0 license.

Re-producing results from the paper

The ReConsider models in the paper are trained on the top-100 predictions from the DPR Retriever + Reader model (Karpukhin et al., 2020) on four datasets: NaturalQuestions, TriviaQA, Trec, and WebQ.

We outline all the steps here for NaturalQuestions, but the same steps can be followed for the other datasets.

  1. Environment Setup
pip install -r requirements.txt
  1. [optional] Get the top-100 retrieved passages for each question using the best DPR retriever model for the NQ train, dev, and test sets. We provide these in our repo, but alternatively, you can obtain them by training the DPR retriever from scratch (from here). You can skip this entire step if you are only running ReConsider.
wget http://dl.fbaipublicfiles.com/reconsider/dpr_retriever_outputs/{nq|webq|trec|tqa}-{train|dev|test}-multi.json
  1. [optional] Get the top-100 predictions from the DPR reader (Karpukhin et al., 2020) executed on the output of the DPR retriever, on the NQ train, dev, and test sets. We provide these in our repo, but alternatively, you can obtain them by training the DPR reader from scratch (from here). You can skip this entire step if you are only running ReConsider.
wget http://dl.fbaipublicfiles.com/reconsider/dpr_reader_outputs/ttttt_{train|dev|test}.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json
  1. [optional] Convert DPR reader predictions to the marked-passage format required by ReConsider.
python prepare_marked_dataset.py --answer_json ttttt__train.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-train-multi.json --out_json paraphrase_selection_train.{nq|tqa|trec|webq}.{bbase|blarge}.100.qp_mp.nopp.title.json --train_M 100

python prepare_marked_dataset.py --answer_json ttttt_dev.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-dev-multi.json --out_json paraphrase_selection_dev.{nq|tqa|trec|webq}.{bbase|blarge}.5.qp_mp.nopp.title.json --dev --test_M 5

python prepare_marked_dataset.py --answer_json ttttt_test.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-test-multi.json --out_json paraphrase_selection_test.{nq|tqa|trec|webq}.{bbase|blarge}.5.qp_mp.nopp.title.json --dev --test_M 5

We also provide these files, so that you don't need to execute this command. You can directly download the output files using:

wget http://dl.fbaipublicfiles.com/reconsider/reconsider_inputs/paraphrase_selection_{train|dev|test}.{nq|tqa|trec|webq}.{bbase|blarge}.qp_mp.nopp.title.json
  1. Train ReConsider Models For Base models:
dset={nq|tqa|trec|webq}
python main.py --do_train --output_dir ps.$dset.bbase --train_file paraphrase_selection_train.$dset.bbase.qp_mp.nopp.title.json --predict_file paraphrase_selection_dev.$dset.bbase.qp_mp.nopp.title.json --train_batch_size 16 --predict_batch_size 144 --eval_period 500 --threads 80 --pad_question --max_question_length 0 --max_passage_length 240 --train_M 30 --test_M 5

For Large models:

dset={nq|tqa|trec|webq}
python main.py --do_train --output_dir ps.$dset.bbase --train_file paraphrase_selection_train.$dset.bbase.qp_mp.nopp.title.json --predict_file paraphrase_selection_dev.$dset.bbase.qp_mp.nopp.title.json --train_batch_size 16 --predict_batch_size 144 --eval_period 500 --threads 80 --pad_question --max_question_length 0 --max_passage_length 240 --train_M 10 --test_M 5 --bert_name bert-large-uncased

Note: If training on Trec or Webq, initialize the model with the model trained on NQ of the corresponding size by adding this parameter: --checkpoint $model_nq_{bbase|blarge}. You can either train this NQ model using the commands above, or directly download it as described below:

We also provide our pre-trained models for download, using this script:

python download_reconsider_models.py --model {nq|trec|tqa|webq}_{bbase|blarse}
  1. Predict on the test set using ReConsider Models
python main.py --do_predict --output_dir /tmp/ --predict_file paraphrase_selection_test.{nq|trec|webq|tqa}.{bbase|blarge}.qp_mp.nopp.title.json  --checkpoint {path_to_model} --predict_batch_size 72 --threads 80 --n_paragraphs 100  --verbose --prefix test_  --pad_question --max_question_length 0 --max_passage_length 240 --predict_batch_size 72 --test_M 5 --bert_name {bert-base-uncased|bert-large-uncased}
Owner
Facebook Research
Facebook Research
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022