Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Overview

PyTorch for Deep Learning: Creating and Deploying Deep Learning Applications

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning: Creating and Deploying Deep Learning Applications

Updates

  • 2020/05/25: Chapter 9.75 — Image Self-Supervised Learning

  • 2020/03/01: Chapter 9.5 - Text Generation With GPT-2 And (only) PyTorch, or Semi/Self-Supervision Learning Part 1 (Letters To Charlotte)

  • 2020/05/03: Chapter 7.5 - Quantizing Models


Deutschsprachige Ausgabe

PyTorch für Deep Learning: Anwendungen für Bild-, Ton- und Textdaten entwickeln und deployen

--> https://dpunkt.de/produkt/pytorch-fuer-deep-learning/

Installationshinweise

Versionskontrolle

Nachdem Sie das Github-Repository lokal geklont (bzw. zuvor geforkt) haben!

Conda

1.) Wechseln Sie zunächst in den Zielordner (cd beginners-pytorch-deep-learning), erstellen Sie dann eine (lokale) virtuelle Umgebung und installieren Sie die benötigten Bibliotheken und Pakete:

conda env create --file environment.yml

2.) Anschließend aktivieren Sie die virtuelle Umgebung:

conda activate myenv

3.) Zum Deaktivieren nutzen Sie den Befehl:

conda deactivate

pip

1.) Wechseln Sie zunächst in den Zielordner (cd beginners-pytorch-deep-learning) und erstellen Sie anschließend eine virtuelle Umgebung:

python3 -m venv myenv

2.) Aktivieren Sie die virtuelle Umgebung (https://docs.python.org/3/library/venv.html):

source myenv/bin/activate (Ubuntu/Mac) myenv\Scripts\activate.bat (Windows)

3.) Erstellen Sie eine (lokale) virtuelle Umgebung und installieren Sie die benötigten Bibliotheken und Pakete:

pip3 install -r requirements.txt

4.) Zum Deaktivieren nutzen Sie den Befehl:

deactivate

Bei Nutzung von Jupyter Notebook

1.) Zunächst müssen Sie Jupyter Notebook installieren:

conda install -c conda-forge notebook oder pip3 install notebook

2.) Nach Aktivierung Ihrer virtuellen Umgebung (s.o.) geben Sie den folgenden Befehl in Ihre Kommandozeile ein, um die ipykernel-Bibliothek herunterzuladen:

conda install ipykernel oder pip3 install ipykernel

3.) Installieren Sie einen Kernel mit Ihrer virtuellen Umgebung:

ipython kernel install --user --name=myenv

4.) Starten Sie Jupyter Notebook:

jupyter notebook

5.) Nach Öffnen des Jupyter-Notebook-Startbildschirms wählen Sie auf der rechten Seite das Feld New (bzw. in der Notebook-Ansischt den Reiter Kernel/Change Kernel) und wählen Sie myenv aus.

Google Colaboratory

In Google Colab stehen Ihnen standardmäßig einige Pakete bereits vorinstalliert zur Verfügung. Da sich Neuinstallationen immer nur auf ein Notebook beziehen, können Sie von einer Einrichtung einer virtuellen Umgebung absehen und direkt die Pakete mit Hilfe der Dateien environment.yml oder requirements.txt / requirements_cuda_available.txt wie oben beschrieben installieren, jedoch zusätzlich mit einem vorangestellten ! , bspw. !pip3 install -r requirements .txt.

Owner
Ian Pointer
Ian Pointer
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021