Deep Networks with Recurrent Layer Aggregation

Related tags

Deep LearningRLANet
Overview

RLA-Net: Recurrent Layer Aggregation

Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation

This is an implementation of RLA-Net (accept by NeurIPS-2021, paper).

RLANet

Introduction

This paper introduces a concept of layer aggregation to describe how information from previous layers can be reused to better extract features at the current layer. While DenseNet is a typical example of the layer aggregation mechanism, its redundancy has been commonly criticized in the literature. This motivates us to propose a very light-weighted module, called recurrent layer aggregation (RLA), by making use of the sequential structure of layers in a deep CNN. Our RLA module is compatible with many mainstream deep CNNs, including ResNets, Xception and MobileNetV2, and its effectiveness is verified by our extensive experiments on image classification, object detection and instance segmentation tasks. Specifically, improvements can be uniformly observed on CIFAR, ImageNet and MS COCO datasets, and the corresponding RLA-Nets can surprisingly boost the performances by 2-3% on the object detection task. This evidences the power of our RLA module in helping main CNNs better learn structural information in images.

RLA module

RLA_module

Changelog

  • 2021/04/06 Upload RLA-ResNet model.
  • 2021/04/16 Upload RLA-MobileNetV2 (depthwise separable conv version) model.
  • 2021/09/29 Upload all the ablation study on ImageNet.
  • 2021/09/30 Upload mmdetection files.
  • 2021/10/01 Upload pretrained weights.

Installation

Requirements

Our environments

  • OS: Linux Red Hat 4.8.5
  • CUDA: 10.2
  • Toolkit: Python 3.8.5, PyTorch 1.7.0, torchvision 0.8.1
  • GPU: Tesla V100

Please refer to get_started.md for more details about installation.

Quick Start

Train with ResNet

- Use single node or multi node with multiple GPUs

Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either single node or multi node data parallel training.

python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 {imagenet-folder with train and val folders}

- Specify single GPU or multiple GPUs

CUDA_VISIBLE_DEVICES={device_ids} python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 {imagenet-folder with train and val folders}

Testing

To evaluate the best model

python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 --resume {path to the best model} -e {imagenet-folder with train and val folders}

Visualizing the training result

To generate acc_plot, loss_plot

python eval_visual.py --log-dir {log_folder}

Train with MobileNet_v2

It is same with above ResNet replace train.py by train_light.py.

Compute the parameters and FLOPs

If you have install thop, you can paras_flops.py to compute the parameters and FLOPs of our models. The usage is below:

python paras_flops.py -a {model_name}

More examples are shown in examples.md.

MMDetection

After installing MMDetection (see get_started.md), then do the following steps:

  • put the file resnet_rla.py in the folder './mmdetection/mmdet/models/backbones/', and do not forget to import the model in the init.py file.
  • put the config files (e.g. faster_rcnn_r50rla_fpn.py) in the folder './mmdetection/configs/base/models/'
  • put the config files (e.g. faster_rcnn_r50rla_fpn_1x_coco.py) in the folder './mmdetection/configs/faster_rcnn'

Note that the config files of the latest version of MMDetection are a little different, please modify the config files according to the latest format.

Experiments

ImageNet

Model Param. FLOPs Top-1 err.(%) Top-5 err.(%) BaiduDrive(models) Extract code GoogleDrive
RLA-ResNet50 24.67M 4.17G 22.83 6.58 resnet50_rla_2283 5lf1 resnet50_rla_2283
RLA-ECANet50 24.67M 4.18G 22.15 6.11 ecanet50_rla_2215 xrfo ecanet50_rla_2215
RLA-ResNet101 42.92M 7.79G 21.48 5.80 resnet101_rla_2148 zrv5 resnet101_rla_2148
RLA-ECANet101 42.92M 7.80G 21.00 5.51 ecanet101_rla_2100 vhpy ecanet101_rla_2100
RLA-MobileNetV2 3.46M 351.8M 27.62 9.18 dsrla_mobilenetv2_k32_2762 g1pm dsrla_mobilenetv2_k32_2762
RLA-ECA-MobileNetV2 3.46M 352.4M 27.07 8.89 dsrla_mobilenetv2_k32_eca_2707 9orl dsrla_mobilenetv2_k32_eca_2707

COCO 2017

Model AP AP_50 AP_75 BaiduDrive(models) Extract code GoogleDrive
Fast_R-CNN_resnet50_rla 38.8 59.6 42.0 faster_rcnn_r50rla_fpn_1x_coco_388 q5c8 faster_rcnn_r50rla_fpn_1x_coco_388
Fast_R-CNN_ecanet50_rla 39.8 61.2 43.2 faster_rcnn_r50rlaeca_fpn_1x_coco_398 f5xs faster_rcnn_r50rlaeca_fpn_1x_coco_398
Fast_R-CNN_resnet101_rla 41.2 61.8 44.9 faster_rcnn_r101rla_fpn_1x_coco_412 0ri3 faster_rcnn_r101rla_fpn_1x_coco_412
Fast_R-CNN_ecanet101_rla 42.1 63.3 46.1 faster_rcnn_r101rlaeca_fpn_1x_coco_421 cpug faster_rcnn_r101rlaeca_fpn_1x_coco_421
RetinaNet_resnet50_rla 37.9 57.0 40.8 retinanet_r50rla_fpn_1x_coco_379 lahj retinanet_r50rla_fpn_1x_coco_379
RetinaNet_ecanet50_rla 39.0 58.7 41.7 retinanet_r50rlaeca_fpn_1x_coco_390 adyd retinanet_r50rlaeca_fpn_1x_coco_390
RetinaNet_resnet101_rla 40.3 59.8 43.5 retinanet_r101rla_fpn_1x_coco_403 p8y0 retinanet_r101rla_fpn_1x_coco_403
RetinaNet_ecanet101_rla 41.5 61.6 44.4 retinanet_r101rlaeca_fpn_1x_coco_415 hdqx retinanet_r101rlaeca_fpn_1x_coco_415
Mask_R-CNN_resnet50_rla 39.5 60.1 43.3 mask_rcnn_r50rla_fpn_1x_coco_395 j1x6 mask_rcnn_r50rla_fpn_1x_coco_395
Mask_R-CNN_ecanet50_rla 40.6 61.8 44.0 mask_rcnn_r50rlaeca_fpn_1x_coco_406 c08r mask_rcnn_r50rlaeca_fpn_1x_coco_406
Mask_R-CNN_resnet101_rla 41.8 62.3 46.2 mask_rcnn_r101rla_fpn_1x_coco_418 8bsn mask_rcnn_r101rla_fpn_1x_coco_418
Mask_R-CNN_ecanet101_rla 42.9 63.6 46.9 mask_rcnn_r101rlaeca_fpn_1x_coco_429 3kmz mask_rcnn_r101rlaeca_fpn_1x_coco_429

Citation

@misc{zhao2021recurrence,
      title={Recurrence along Depth: Deep Convolutional Neural Networks with Recurrent Layer Aggregation}, 
      author={Jingyu Zhao and Yanwen Fang and Guodong Li},
      year={2021},
      eprint={2110.11852},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Questions

Please contact '[email protected]' or '[email protected]'.

Owner
Joy Fang
Joy Fang
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022