Deep Networks with Recurrent Layer Aggregation

Related tags

Deep LearningRLANet
Overview

RLA-Net: Recurrent Layer Aggregation

Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation

This is an implementation of RLA-Net (accept by NeurIPS-2021, paper).

RLANet

Introduction

This paper introduces a concept of layer aggregation to describe how information from previous layers can be reused to better extract features at the current layer. While DenseNet is a typical example of the layer aggregation mechanism, its redundancy has been commonly criticized in the literature. This motivates us to propose a very light-weighted module, called recurrent layer aggregation (RLA), by making use of the sequential structure of layers in a deep CNN. Our RLA module is compatible with many mainstream deep CNNs, including ResNets, Xception and MobileNetV2, and its effectiveness is verified by our extensive experiments on image classification, object detection and instance segmentation tasks. Specifically, improvements can be uniformly observed on CIFAR, ImageNet and MS COCO datasets, and the corresponding RLA-Nets can surprisingly boost the performances by 2-3% on the object detection task. This evidences the power of our RLA module in helping main CNNs better learn structural information in images.

RLA module

RLA_module

Changelog

  • 2021/04/06 Upload RLA-ResNet model.
  • 2021/04/16 Upload RLA-MobileNetV2 (depthwise separable conv version) model.
  • 2021/09/29 Upload all the ablation study on ImageNet.
  • 2021/09/30 Upload mmdetection files.
  • 2021/10/01 Upload pretrained weights.

Installation

Requirements

Our environments

  • OS: Linux Red Hat 4.8.5
  • CUDA: 10.2
  • Toolkit: Python 3.8.5, PyTorch 1.7.0, torchvision 0.8.1
  • GPU: Tesla V100

Please refer to get_started.md for more details about installation.

Quick Start

Train with ResNet

- Use single node or multi node with multiple GPUs

Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either single node or multi node data parallel training.

python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 {imagenet-folder with train and val folders}

- Specify single GPU or multiple GPUs

CUDA_VISIBLE_DEVICES={device_ids} python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 {imagenet-folder with train and val folders}

Testing

To evaluate the best model

python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 --resume {path to the best model} -e {imagenet-folder with train and val folders}

Visualizing the training result

To generate acc_plot, loss_plot

python eval_visual.py --log-dir {log_folder}

Train with MobileNet_v2

It is same with above ResNet replace train.py by train_light.py.

Compute the parameters and FLOPs

If you have install thop, you can paras_flops.py to compute the parameters and FLOPs of our models. The usage is below:

python paras_flops.py -a {model_name}

More examples are shown in examples.md.

MMDetection

After installing MMDetection (see get_started.md), then do the following steps:

  • put the file resnet_rla.py in the folder './mmdetection/mmdet/models/backbones/', and do not forget to import the model in the init.py file.
  • put the config files (e.g. faster_rcnn_r50rla_fpn.py) in the folder './mmdetection/configs/base/models/'
  • put the config files (e.g. faster_rcnn_r50rla_fpn_1x_coco.py) in the folder './mmdetection/configs/faster_rcnn'

Note that the config files of the latest version of MMDetection are a little different, please modify the config files according to the latest format.

Experiments

ImageNet

Model Param. FLOPs Top-1 err.(%) Top-5 err.(%) BaiduDrive(models) Extract code GoogleDrive
RLA-ResNet50 24.67M 4.17G 22.83 6.58 resnet50_rla_2283 5lf1 resnet50_rla_2283
RLA-ECANet50 24.67M 4.18G 22.15 6.11 ecanet50_rla_2215 xrfo ecanet50_rla_2215
RLA-ResNet101 42.92M 7.79G 21.48 5.80 resnet101_rla_2148 zrv5 resnet101_rla_2148
RLA-ECANet101 42.92M 7.80G 21.00 5.51 ecanet101_rla_2100 vhpy ecanet101_rla_2100
RLA-MobileNetV2 3.46M 351.8M 27.62 9.18 dsrla_mobilenetv2_k32_2762 g1pm dsrla_mobilenetv2_k32_2762
RLA-ECA-MobileNetV2 3.46M 352.4M 27.07 8.89 dsrla_mobilenetv2_k32_eca_2707 9orl dsrla_mobilenetv2_k32_eca_2707

COCO 2017

Model AP AP_50 AP_75 BaiduDrive(models) Extract code GoogleDrive
Fast_R-CNN_resnet50_rla 38.8 59.6 42.0 faster_rcnn_r50rla_fpn_1x_coco_388 q5c8 faster_rcnn_r50rla_fpn_1x_coco_388
Fast_R-CNN_ecanet50_rla 39.8 61.2 43.2 faster_rcnn_r50rlaeca_fpn_1x_coco_398 f5xs faster_rcnn_r50rlaeca_fpn_1x_coco_398
Fast_R-CNN_resnet101_rla 41.2 61.8 44.9 faster_rcnn_r101rla_fpn_1x_coco_412 0ri3 faster_rcnn_r101rla_fpn_1x_coco_412
Fast_R-CNN_ecanet101_rla 42.1 63.3 46.1 faster_rcnn_r101rlaeca_fpn_1x_coco_421 cpug faster_rcnn_r101rlaeca_fpn_1x_coco_421
RetinaNet_resnet50_rla 37.9 57.0 40.8 retinanet_r50rla_fpn_1x_coco_379 lahj retinanet_r50rla_fpn_1x_coco_379
RetinaNet_ecanet50_rla 39.0 58.7 41.7 retinanet_r50rlaeca_fpn_1x_coco_390 adyd retinanet_r50rlaeca_fpn_1x_coco_390
RetinaNet_resnet101_rla 40.3 59.8 43.5 retinanet_r101rla_fpn_1x_coco_403 p8y0 retinanet_r101rla_fpn_1x_coco_403
RetinaNet_ecanet101_rla 41.5 61.6 44.4 retinanet_r101rlaeca_fpn_1x_coco_415 hdqx retinanet_r101rlaeca_fpn_1x_coco_415
Mask_R-CNN_resnet50_rla 39.5 60.1 43.3 mask_rcnn_r50rla_fpn_1x_coco_395 j1x6 mask_rcnn_r50rla_fpn_1x_coco_395
Mask_R-CNN_ecanet50_rla 40.6 61.8 44.0 mask_rcnn_r50rlaeca_fpn_1x_coco_406 c08r mask_rcnn_r50rlaeca_fpn_1x_coco_406
Mask_R-CNN_resnet101_rla 41.8 62.3 46.2 mask_rcnn_r101rla_fpn_1x_coco_418 8bsn mask_rcnn_r101rla_fpn_1x_coco_418
Mask_R-CNN_ecanet101_rla 42.9 63.6 46.9 mask_rcnn_r101rlaeca_fpn_1x_coco_429 3kmz mask_rcnn_r101rlaeca_fpn_1x_coco_429

Citation

@misc{zhao2021recurrence,
      title={Recurrence along Depth: Deep Convolutional Neural Networks with Recurrent Layer Aggregation}, 
      author={Jingyu Zhao and Yanwen Fang and Guodong Li},
      year={2021},
      eprint={2110.11852},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Questions

Please contact '[email protected]' or '[email protected]'.

Owner
Joy Fang
Joy Fang
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022