A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Overview

Imagenette

🎶 Imagenette, gentille imagenette,

Imagenette, je te plumerai. 🎶

(Imagenette theme song thanks to Samuel Finlayson)


NB:

  • Versions of Imagenette and Imagewoof with noisy labels are now available as CSV files that come with the dataset.
  • The Imagenette and Imagewoof datasets have recently (Dec 6 2019) changed. They now have a 70/30 train/valid split.
  • The old versions (which have a much smaller validation set) are still available with the same URLs, but the URLs below point to the new versions.
  • We've also added the new Image网 dataset (see below for details). The leaderboards below been updated using the new datasets, using a strong. Can you beat it?...

The Datasets

Imagenette

Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute).

'Imagenette' is pronounced just like 'Imagenet', except with a corny inauthentic French accent. If you've seen Peter Sellars in The Pink Panther, then think something like that. It's important to ham up the accent as much as possible, otherwise people might not be sure whether you're refering to "Imagenette" or "Imagenet". (Note to native French speakers: to avoid confusion, be sure to use a corny inauthentic American accent when saying "Imagenet". Think something like the philosophy restaurant skit from Monty Python's The Meaning of Life.)

The '320 px' and '160 px' versions have their shortest side resized to that size, with their aspect ratio maintained.

The dataset also comes with a CSV file with 1%, 5%, 25%, and 50% of the labels randomly changed to an incorrect label. More information about the noisy labels are provided in the "noisy_labels" folder. Leaderboards for 5% noise and 50% noise are maintained below.

Too easy for you? In that case, you might want to try Imagewoof.

Imagewoof

Imagewoof is a subset of 10 classes from Imagenet that aren't so easy to classify, since they're all dog breeds. The breeds are: Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, Dingo, Golden retriever, Old English sheepdog. (No we will not enter in to any discussion in to whether a dingo is in fact a dog. Any suggestions to the contrary are un-Australian. Thank you for your cooperation.)

The dataset also comes with a CSV file with 1%, 5%, 25%, and 50% of the labels randomly changed to an incorrect label. More information about the noisy labels are provided in the "noisy_labels" folder.

Imagewoof too easy for you too?!? Then get your hands on Image网.

Image网

Image网 is pronounced "Imagewang"; 网 means "net" in Chinese! Image网 contains Imagenette and Imagewoof combined, but with some twists that make it into a tricky semi-supervised unbalanced classification problem:

  • The validation set is the same as Imagewoof (i.e. 30% of Imagewoof images); there are no Imagenette images in the validation set (they're all in the training set)

  • Only 10% of Imagewoof images are in the training set!

  • The remaining are in the unsup ("unsupervised") directory, and you can not use their labels in training!

  • It's even hard to type and hard to say!

  • Full size download;

  • 320 px download;

  • 160 px download.

Why Imagenette?

I (Jeremy Howard, that is) mainly made Imagenette because I wanted a small vision dataset I could use to quickly see if my algorithm ideas might have a chance of working. They normally don't, but testing them on Imagenet takes a really long time for me to find that out, especially because I'm interested in algorithms that perform particularly well at the end of training.

But I think this can be a useful dataset for others as well.

Usage

If you are already using the fastai library, you can download and access these quickly with commands like:

path = untar_data(URLs.IMAGENETTE_160)

where path now stores the destination to ImageNette-160.

For researchers

  • Try to create a classifier that's as accurate as possible under various constraints (we'll keep leaderboards below, submit your PR with a link to your repo or gist!), such as:
    • Within a certain number of epochs: 5, 20, 40, 160
    • Within a certain budget on AWS or GCP (use spot or interruptible instances to save money): $0.05, $0.10, $0.25, $0.50, $1.00, $2.00
  • Experiment with other low resource problems like transfer learning from small datasets, using semi-supervised learning to help classify small datasets, etc
  • Test the impact of using different sized images, either separately, or together as part of training (i.e. progressive resizing)
  • Compare your algorithm on easy vs hard small datasets, which are otherwise very similar (Imagenette vs Imagewoof)
  • Ensure that you start from random weights - not from pretrained weights.

For students

  • Practice your modeling skills on a dataset that's very similar to Imagenet, but much less expensive to deal with
  • Do send me a PR with your other applications for this dataset!

Tips

  • Because there are only 10 categories, the usual "top 5 accuracy" isn't so interesting. So you should generally report top 1 accuracy when using Imagenette
  • The best approaches to 5 epoch training often don't scale well to more epochs
  • Data augmentation like mixup tends to only help for 80+ epochs

Leaderboard

Generally you'll see +/- 1% differences from run to run since it's quite a small validation set. So please only send in contributions that are higher than the reported accuracy >80% of the time. Here's the rules:

  • No inference time tricks, e.g. no: TTA, validation size > train size
  • Must start with random weights
  • Must be one of the size/#epoch combinations listed in the table
  • If you have the resources to do so, try to get an average of 5 runs, to get a stable comparison. Use the "# Runs" column to include this (note that train_imagenette.py provides a --runs flag to make this easy)
  • In the URL column include a link to a notebook, blog post, gist, or similar which explains what you did to get your result, and includes the code you used (or a link to it), including the exact commit, so that others can reproduce your result.

Imagenette Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 fastai2 train_imagenette.py 2020-10 + MaxBlurPool + tuned hyperparams 87.43% 5, mean
128 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 91.57% 5, mean
128 80 fastai2 train_imagenette.py 2020-01 93.55% 1
128 200 fastai2 train_imagenette.py 2020-01 94.24% 1
192 5 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 86.76% 5, mean
192 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 92.50% 5, mean
192 80 fastai2 train_imagenette.py 2020-01 94.50% 1
192 200 fastai2 train_imagenette.py 2020-01 95.03% 1
256 5 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 86.85% 5, mean
256 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 93.53% 5, mean
256 80 fastai2 train_imagenette.py 2020-01 94.90% 1
256 200 fastai2 train_imagenette.py 2020-01 95.11% 1

Imagenette w/Label Noise = 5%

Size (px) Epochs URL Accuracy # Runs
128 5 baseline 83.44% 1
128 20 baseline 89.53% 1
128 80 baseline 89.30% 1
128 200 baseline 90.04% 1
192 5 baseline 84.13% 1
192 20 baseline 90.65% 1
192 80 baseline 91.01% 1
192 200 baseline 91.08% 1
256 5 SESEMI 88.87% ± 0.67 5,mean±std
256 20 baseline 91.39% 1
256 80 SESEMI 92.95% ± 0.12 3,mean±std
256 200 SESEMI 93.96% ± 0.23 3,mean±std

Imagenette w/Label Noise = 50%

Size (px) Epochs URL Accuracy # Runs
128 5 baseline 66.60% 1
128 20 baseline 79.36% 1
128 80 baseline 50.80% 1
128 200 baseline 52.18% 1
192 5 baseline 67.54% 1
192 20 baseline 79.34% 1
192 80 baseline 52.51% 1
192 200 baseline 53.71% 1
256 5 SESEMI 76.72% ± 0.83 5,mean±std
256 20 baseline 79.21% 1
256 80 SESEMI 57.76% ± 0.39 3,mean±std
256 200 SESEMI 61.48% ± 0.33 3,mean±std

Imagewoof Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 depthwise(x6) 76.61% 5, mean
128 20 depthwise(x4) 86.27% 5, mean
128 80 depthwise(x4) 87.83% 1
128 200 fastai2 train_imagenette.py 2020-01 87.20% 1
192 5 depthwise(x4) 81.15% 5, mean
192 20 depthwise(x4) 88.37% 5, mean
192 80 depthwise(x2) 90.30% 1
192 200 fastai2 train_imagenette.py 2020-01 89.54% 1
256 5 Resnet Trick + Mish + Sa + MaxBlurPool 78,84% 5, mean
256 20 Resnet Trick + Mish + Sa + MaxBlurPool 88,58% 5, mean
256 80 fastai2 train_imagenette.py 2020-01 90.48% 1
256 200 fastai2 train_imagenette.py 2020-01 90.38% 1

Image网 Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 SwAV 72.94% 5,mean
128 20 SwAV 72.18% 3,mean
128 80 SwAV 69.53% 1
128 200 SwAV 66.04% 1
192 5 SwAV 77.07% 5,mean
192 20 SwAV 77.81% 3,mean
192 80 SwAV 74.9% 1
192 200 SwAV 71.77% 1
256 5 SwAV 79.56% 5,mean
256 20 SwAV 79.2% 3,mean
256 80 SESEMI 78.41% ± 0.39 5,mean±std
256 200 SESEMI 79.27% ± 0.20 3,mean±std
Owner
fast.ai
fast.ai
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022