Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Related tags

Deep LearningArTIST
Overview

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021)

Pytorch implementation of the ArTIST motion model. In this repo, there are

  • Training script for the Moving Agent network
  • Training script for the ArTIST motion model
  • Demo script for Inferring the likelihood of current observations (detections)
  • Demo script for Inpainting the missing observation/detections

Demo 1: Likelihood estimation of observation

Run:

python3 demo_scoring.py

This will generate the output in the temp/ar/log_p directory, look like this: scoring demo

This demo gets as input a pretrained model of the Moving Agent Network (MA-Net), a pretrained model of ArTIST, the centroids (obtain centroids via the script in the utils), a demo test sample index and the number of clusters.

The model then evaluates the log-likelihood (lower the better) of all detections as the continuation of the observed sequence.

Demo 2: Sequence inpainting

Run:

python3 demo_inpainting.py

This will generate the multiple plauusible continuations of an observed motion, stored in the temp/ar/inpainting directory. One example looks like this: inpainting demo

This demo gets as input a pretrained model of the Moving Agent Network (MA-Net), a pretrained model of ArTIST, the centroids (obtain centroids via the script in the utils), a demo test sample index and the number of samples we wish to generate.

For each generated future sequence, it computes the IoU between the last generated bounding box and the last groundtruth bounding box, as well as the mean IoU for the entire generated sequence and the groundtruth sequence.

Utilities

In this repo, there are a number of scripts to generate the required data to train/evaluate ArTIST.

  • prepare_data: Given the annotations of a dataset (e.g., MOT17), it extracts the motion sequences as well as the IDs of the social tracklets living the life span of the corresponding sequence, and stores it as a dictionary. If there are multiple tracking datasets that you wish to combine, you can use the merge_datasets() function inside this script.
  • clustering: Given the output dictionary of prepare_data script, this script performs the K-Means clustering and stores the centroids which are then used in the ArTIST model.
  • dataloader_ae and dataloader_ar: Given the post-processes version of the dataset dictionary (which can be done by running the post_process script), these two scripts define the dataloaders for training the MA-Net and ArTIST. Note that the dataloader of ArTIST uses the MA-Net to compute the social information. This can also be done jointly in an end-to-end fashion, which we observed almost no difference.
  • create_demo_test_subset: In order to run the demo scripts, you need to run this script. However, the demo test subset has been produced and stored in data/demo_test_subset.npy.

Data

You can download the required data from the Release and put it in data/ directory.

Citation

If you find this work useful in your own research, please consider citing:

@inproceedings{saleh2021probabilistic,
author={Saleh, Fatemeh and Aliakbarian, Sadegh and Rezatofighi, Hamid and Salzmann, Mathieu and Gould, Stephen},
title = {Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
year = {2021}
}
You might also like...
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

 A New Approach to Overgenerating and Scoring Abstractive Summaries
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

The code for our paper
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Object Detection and Multi-Object Tracking
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.
Comments
  • Re-creating paper results

    Re-creating paper results

    Did you use implement the ArTIST paradigm in the SORT algorithm to achieve the results in your paper? If so, do you have an example of integrating the ArTIST motion model with SORT? I am trying to re-create the results of the paper.

    How do I re-create the results you obtained in your paper?

    opened by vineetrshenoy 1
  • dataloader.py: shape mismatch

    dataloader.py: shape mismatch

    when i use dataloader.py to load the data, here comes a error:could not broadcast input array from shape (2) into shape (4) in line 33 of dataloader.py, I wonder how to fix the bug and what is the data format in data/postp_combined_path_mot_train.npy, thanks for your help.

    opened by guileihu 0
Releases(data-release)
Owner
Fatemeh
Fatemeh
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022