A map update dataset and benchmark

Related tags

Deep Learningmuno21
Overview

MUNO21

MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous datasets focus on road extraction, and measure how well a method can infer a road network from aerial or satellite imagery. In contrast, MUNO21 measures how well a method can modify the road network data in an existing digital map dataset to make it reflect the latest physical road network visible from imagery. This task is more practical, since it doesn't throw away the existing map, but also more challenging, as physical roads may be constructed, bulldozed, or otherwise modified.

For more details, see https://favyen.com/muno21/.

This repository contains the code that was used to create MUNO21, as well as code for working with the dataset and computing evaluation metrics.

Requirements

Compiler and application requirements include the following. The versions are what we use and older versions make work as well.

  • Go 1.16+ (with older versions, module-aware mode must be enabled)
  • Python 3.5
  • osmium-tool 2.16.0 (only needed for dataset pre-processing)
  • ImageMagick 6.8 (only needed for dataset pre-processing)

Python requirements are in requirements.txt, and can be installed with:

pip install -r requirements.txt

These requirements should be sufficient to run dataset pre-processing, automatic candidate generation and clustering, visualization, metric evaluation, and post-processing with removing G_extra and fusing new roads into the base map.

To run the included map update methods, a range of additional requirements are needed, depending on the particular method:

  • TensorFlow 1.15 (not 2.0)
  • pytorch 1.7
  • scipy 1.4
  • OpenCV
  • rdp

Dataset

Obtaining the Dataset

Download and extract the MUNO21 dataset:

wget https://favyen.com/files/muno21.zip
unzip muno21.zip

In the commands below, we may assume that you have placed the dataset in /data/:

mv mapupdate/ /data/

The dataset includes aerial image and road network data in large tiles around several cities, along with annotations that specify the map update scenarios. Some steps below will require road network data to be extracted in windows corresponding to the scenarios:

cd muno21/go/
mkdir /data/identity
export PYTHONPATH=../python/
python ../methods/identity/run.py /data/graphs/graphs/ /data/annotations.json /data/identity/

Data Format

Aerial imagery is available as JPEG images in the naip/jpg/ folder. These images are obtained from NAIP.

Road networks are available as .graph files in the graphs/graphs folder. See https://favyen.com/muno21/graph-format.txt for a description of the data format of these files. Note that, in contrast to some other datasets, road networks are NOT represented as images -- instead, they are undirected spatial networks, where vertices are labeled with (x,y) coordinates and edges correspond to road segments. The (x,y) coordinates indicate pixels in the corresponding JPEG image.

Note that two versions of the road network are available in this format.

  • {region_x_y_time}.graph: only includes public roads suitable for motor vehicles.
  • {region_x_y_time}_all.graph: includes most other "ways" that appear in OpenStreetMap.

The original OpenStreetMap data is available in the graphs/osm/ folder, in files encoded under the OSM PBF format. Methods may take advantage of the additional information in these files, such as various road attributes. To convert longitude-latitude coordinates to pixel coordinates, see go/lib/regions.go and go/preprocess/osm_to_graph.go.

Task

The MUNO21 dataset includes 1,294 map update scenarios. Each scenario specifies a pre-change timestamp, post-change timestamp, and a bounding box window where some change occurred.

The input is aerial imagery from each of four years, along with road network data from a specific pre-change year (usually 2012 or 2013).

The ground truth label is the road network from a specific post-change year (usually 2018 or 2019) inside the bounding box window.

During training, a method may use all aerial imagery and road network data from the training regions (see train.json). To facilitate self-supervised learning, methods may also use all aerial imagery in the test regions (see test.json), but only road network data from 2012 or 2013 in those regions.

During inference, for a given scenario, a method has access to the same data that is available during training. It additionally has access to road network data from all regions at the pre-change timestamp, although since this is usually 2012 or 2013, this usually does not actually provide any more data.

The method should output a road network corresponding to the physical roads visible in the aerial imagery at the post-change timestamp inside the bounding box window.

Metrics

Methods are compared in terms of their precision-recall curves.

Recall measures how much closer the output road networks are to the ground truth data (post-change road network) than the pre-change road networks. Two alternative ways of comparing road networks, PixelF1 and APLS, are used.

Precision measures how frequently a method makes incorrect modifications to the road network in scenarios where no change has occurred between the pre- and post-change timestamps.

A method may expose a single real-valued parameter that provides a tradeoff between precision and recall. For example, a method that infers road networks using image segmentation may expose the segmentation probability confidence threshold for the "road" class as a parameter -- increasing this threshold generally provides higher precision but lower recall. Methods are compared in terms of their precision-recall curves when varying this parameter.

Scenario Specification

Scenarios are specified in the annotations.json file. Let annotation refer to one annotation JSON object.

Each scenario specifies a spatial window in pixel coordinates where the map has changed: annotation['Cluster']['Window']. A method may use imagery and road network data outside that window, but its output road network should span that window plus 128-pixel padding; it will be evaluated only inside the window (with no padding), but the padding ensures that the evaluation metrics are computed correctly along the boundary of the window.

Currently, the pre-change timestamp is always 2013, and the post-change timestamp is always the year of the most recent aerial image (either 2018 or 2019).

Infer Road Networks

Refer to the documentation in methods/{classify,recurrentunet,road_connectivity,roadtracerpp,sat2graph}.

Each method besides classify is taken from a publicly available implementation (see README in each method directory.) We make minor changes to make them work with MUNO21. We also find many bugs in road_connectivity which we have to manually fix, and we adapt Sat2Graph to work with Python3. road_connectivity and recurrentunet will only work with Python 2.7.

Post-process Inferred Road Networks

Applying a method to infer road networks should yield a directory containing subdirectories (corresponding to different confidence thresholds) that each contain .graph files. Most methods require post-processing under our map fusion approach before evaluation.

Suppose that you have computed the outputs of MAiD in /data/maid/out/. Then, for each confidence threshold:

mkdir /data/maid/fuse/
mkdir /data/maid/fuse/10/
go run postprocess/fuse.go /data/annotations.json normal /data/identity/ /data/maid/out/10/ /data/maid/fuse/10/

Optionally, visualize an inferred road network. Below, 6 can be changed to any annotation index corresponding to /data/annotations.json.

go run vis/visualize_inferred.go /data/annotations.json 6 /data/naip/jpg/ /data/graphs/graphs/ /data/maid/fuse/10/ default ./

The command above should produce an image ./6.jpg.

Evaluation

For each confidence threshold, run e.g.:

python metrics/apls.py /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json
go run metrics/geo.go /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json

Above, the first command computes APLS (which takes a long time to run) while the second computes PixelF1 (aka GEO metric). These commands produce scores.json and geo.json files respectively in the /data/maid/fuse/10/ directory containing metric outputs for each test scenario.

To obtain error rate:

go run metrics/error_rate.go /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json

To produce a precision-recall curve from the scores across multiple confidence thresholds, run:

python metrics/score_details.py /data/annotations.json /data/maid/fuse/{10,20,30,40,50}/geo.json

Building the Dataset

The documentation below outlines how the dataset was built. You do not need to follow these steps unless you are trying to replicate the dataset from raw NAIP aerial images from Google EarthEngine and OpenStreetMap history dumps.

Dataset Pre-processing

We preprocess raw NAIP and OSM data using the code in go/preprocess.

  1. Obtain NAIP images from Google EarthEngine.
  2. Obtain us-internal.osh.pbf from https://download.geofabrik.de/north-america/us.html
  3. Extract history around individual cities: go run preprocess/osm_space_filter.go /data/graphs/big/us-internal.osh.pbf /data/graphs/history/
  4. Extract OSM dumps at different times: python3 preprocess/osm_time_filter.py /data/graphs/history/ /data/graphs/osm/
  5. Convert NAIP images to JPG: python3 preprocess/tif_to_jpg.py /data/naip/tif/ /data/naip/jpg/
  6. Record the NAIP image sizes (needed for coordinate transforms and such): python3 preprocess/save_image_sizes.py /data/naip/jpg/ /data/sizes.json
  7. Convert to MUNO21 .graph file format: go run preprocess/osm_to_graph.go /data/graphs/osm/ /data/graphs/graphs/
  8. Randomly split the cities into train/test: python3 preprocess/pick_train_test.py /data/graphs/history/ /data/
  9. (Optional) Visualize the graph and image extracted at a tile: python3 vis/vis.py /data/naip/jpg/ny_1_0_2019.jpg /data/graphs/graphs/ny_1_0_2018-07-01.graph out.jpg

Candidate Generation and Clustering

We then generate and cluster candidates.

  1. Candidate generation: go run annotate/find_changed_roads.go /data/graphs/graphs/ /data/changes/
  2. Clustering: go run annotate/cluster_changes.go /data/changes/ /data/cluster/
  3. No-change windows: go run annotate/find_nochange.go /data/graphs/graphs/ /data/cluster-nochange/
  4. Output visualizations for annotation: go run annotate/visualize_clusters.go /data/cluster/ /data/naip/jpg/ /data/graphs/graphs/ /data/vis/

Annotation Post-processing

After using the annotation tools like go/annotate, we process the output annotations into JSON file:

  1. Convert annotation data to JSON: go run process_annotations.go /data/cluster/ /data/annotations.txt /data/cluster-nochange/ /data/annotations.json
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022