New Modeling The Background CodeBase

Related tags

Text Data & NLPMiBv2
Overview

Modeling the Background for Incremental Learning in Semantic Segmentation

This is the updated official PyTorch implementation of our work: "Modeling the Background for Incremental Learning in Semantic Segmentation" accepted at CVPR 2020. For the original implementation, please refer to MiB In the update, we provide:

  • Support for WandB
  • Removed Nvidia DDP/AMP for PyTorch ones
  • Clear and better logging
  • Fixed MiB parameters in the argparser

We still want to provide users implementations of:

Requirements

To install the requirements, use the requirements.txt file:

pip install -r /path/to/requirements.txt

How to download data

In this project we use two dataset, ADE20K and Pascal-VOC 2012. We provide the scripts to download them in data/download_\ .sh . The script takes no inputs but use it in the target directory (where you want to download data).

ImageNet Pretrained Models

After setting the dataset, you download the models pretrained on ImageNet using InPlaceABN. Download the ResNet-101 model (we only need it but you can also download other networks if you want to change it). Then, put the pretrained model in the pretrained folder.

How to perform training

The most important file is run.py, that is in charge to start the training or test procedure. To run it, simpy use the following command:

python -m torch.distributed.launch --nproc_per_node=
   
     run.py --data_root 
    
      --name 
     
       .. other args ..

     
    
   

The default is to use a pretraining for the backbone used, that is searched in the pretrained folder of the project. We used the pretrained model released by the authors of In-place ABN (as said in the paper), that can be found here: link. Since the pretrained are made on multiple-gpus, they contain a prefix "module." in each key of the network. Please, be sure to remove them to be compatible with this code (simply rename them using key = key[7:]). If you don't want to use pretrained, please use --no-pretrained.

There are many options (you can see them all by using --help option), but we arranged the code to being straightforward to test the reported methods. Leaving all the default parameters, you can replicate the experiments by setting the following options.

  • please specify the data folder using: --data_root
  • dataset: --dataset voc (Pascal-VOC 2012) | ade (ADE20K)
  • task: --task , where tasks are
    • 15-5, 15-5s, 19-1 (VOC), 100-50, 100-10, 50, 100-50b, 100-10b, 50b (ADE, b indicates the order)
  • step (each step is run separately): --step , where N is the step number, starting from 0
  • (only for Pascal-VOC) disjoint is default setup, to enable overlapped: --overlapped
  • learning rate: --lr 0.01 (for step 0) | 0.001 (for step > 0)
  • batch size: --batch_size <24/num_GPUs>
  • epochs: --epochs 30 (Pascal-VOC 2012) | 60 (ADE20K)
  • method: --method , where names are
    • FT, LWF, LWF-MC, ILT, EWC, RW, PI, MIB

For all details please follow the information provided using the help option.

Example commands

LwF on the 100-50 setting of ADE20K, step 0: python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset ade --name LWF --task 100-50 --step 0 --lr 0.01 --epochs 60 --method LWF

MIB on the 50b setting of ADE20K, step 2: python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset ade --name MIB --task 100-50 --step 2 --lr 0.001 --epochs 60 --method MIB

LWF-MC on 15-5 disjoint setting of VOC, step 1: python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset voc --name LWF-MC --task 15-5 --step 1 --lr 0.001 --epochs 30 --method LWF-MC

RW on 15-1 overlapped setting of VOC, step 1: python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset voc --name LWF-MC --task 15-5s --overlapped --step 1 --lr 0.001 --epochs 30 --method RW

Once you trained the model, you can see the result on tensorboard (we perform the test after the whole training) or you can test it by using the same script and parameters but using the command --test that will skip all the training procedure and test the model on test data.

Cite us

Please, cite the following article when referring to this code/method.

@inProceedings{cermelli2020modeling,
   author = {Cermelli, Fabio and Mancini, Massimiliano and Rota Bul\`o, Samuel and Ricci, Elisa and Caputo, Barbara},
   title  = {Modeling the Background for Incremental Learning in Semantic Segmentation},
   booktitle = {Computer Vision and Pattern Recognition (CVPR)},
   year      = {2020},
   month     = {June}
}
Owner
Fabio Cermelli
My research interest in AI includes Computer vision and Reinforcement learning.
Fabio Cermelli
Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

2 Feb 03, 2022
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
🦆 Contextually-keyed word vectors

sense2vec: Contextually-keyed word vectors sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detaile

Explosion 1.5k Dec 25, 2022
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
A BERT-based reverse-dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end Quick Start C

Eu-Bin KIM 94 Dec 08, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022