Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

Overview

G2LTex

This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due to the agreement with other company, some parts can only be released in the form of .so files. More information and the paper can be found on our group website and Qingan's homepage.

Publication

If you find this code useful for your research, please cite our work:

Yanping Fu, Qingan Yan, Long Yang, Jie Liao, Chunxia Xiao. Texture Mapping for 3D Reconstruction with RGB-D Sensor. In CVPR. 2018.

@inproceedings{fu2018texture,
  title={Texture Mapping for 3D Reconstruction with RGB-D Sensor},
  author={Fu, Yanping and Yan, Qingan and Yang, Long and Liao, Jie and Xiao, Chunxia},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={4645--4653},
  year={2018},
  organization={IEEE}
}

How to use

1. Run

To test our algorithm. run G2LTex in command line:

./bin/G2LTex [DIR] [PLY] 

Params explanation: -PLY: The reconstructed model for texture mapping. -DIR: The texture image directory, include rgb images, depth images, and camera trajectory.

The parameters of the camera and the system can be set in the config file.

Config/config.yml

How to install and run this code.

git clone https://github.com/fdp0525/G2LTex.git
cd G2LTex/bin
./G2LTex ../Data/bloster/textureimages ../Data/bloster/bloster.ply

We need to modify the configuration file config.yml before running the other datasets.

./G2LTex ../Data/apt0/apt0 ../Data/apt0/apt0.ply

2. Input Format

  • Color frames (color_XX.jpg): RGB, 24-bit, JPG.
  • Depth frames (depth_XX.png): depth (mm), 16-bit, PNG (invalid depth is set to 0).
  • Camera poses (color_XX.cam): world-to-camera [tx, ty, tz, R00, R01, R02, R10, R11, R12, R20, R21, R22].

3. Dependencies

The code has following prerequisites:

  • ubuntu 16.04
  • gcc (5.4.0)
  • OpenCV (2.4.10)
  • Eigen (>3.0)
  • png12
  • jpeg

4. Parameters

All the parameters can be set in the file Config/config.yml as follows:

%YAML:1.0
depth_fx: 540.69
depth_fy: 540.69
depth_cx: 479.75
depth_cy: 269.75
depth_width: 960
depth_height: 540

RGB_fx: 1081.37
RGB_fy: 1081.37
RGB_cx: 959.5
RGB_cy: 539.5
RGB_width: 1920
RGB_height: 1080
.
.
.

5. Results

Some precomputed results can be found in the folder results/.

Owner
Fu Yanping(付燕平)
Fu Yanping(付燕平)
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022