FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

Related tags

Deep LearningFedCV
Overview

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

Image Classification

Dataset: Google Landmark, COCO, ImageNet

Model: EfficientNetB0, MobileNetV3

Object Detection

Dataset: COCO

Model: YoLoV5

Google Doc: https://docs.google.com/document/d/1AU-3XT5vLKjLjvOOcdfPfTDwnww1C3xEaroA94pKaWU/edit#heading=h.xldeyzrvdr99

Image Segmentation

Dataset: COCO (Pretraining), Pascal (Fine-Tuning)

Model: DeepLabV3+, U-Net

https://docs.google.com/document/d/1TJi3os3oRQlm6rIwoYfHjUA80M_9IQZ0_iRApuRs4s8/edit

Installation

http://doc.fedml.ai/#/installation

After the clone of this repository, please run the following command to get FedML submodule to your local.

mkdir FedML
cd FedML
git submodule init
git submodule update

Code Structure of FedCV

  • FedML: a soft repository link generated using git submodule add https://github.com/FedML-AI/FedML.

  • data: provide data downloading scripts and store the downloaded datasets. Note that in FedML/data, there also exists datasets for research, but these datasets are used for evaluating federated optimizers (e.g., FedAvg) and platforms. FedNLP supports more advanced datasets and models.

  • data_preprocessing: data loaders

  • model: advanced CV models.

  • trainer: please define your own trainer.py by inheriting the base class in FedML/fedml-core/trainer/fedavg_trainer.py. Some tasks can share the same trainer.

  • experiments/distributed:

  1. experiments is the entry point for training. It contains experiments in different platforms. We start from distributed.
  2. Every experiment integrates FOUR building blocks FedML (federated optimizers), data_preprocessing, model, trainer.
  3. To develop new experiments, please refer the code at experiments/distributed/text-classification.
  • experiments/centralized:
  1. please provide centralized training script in this directory.
  2. This is used to get the reference model accuracy for FL.
  3. You may need to accelerate your training through distributed training on multi-GPUs and multi-machines. Please refer the code at experiments/centralized/DDP_demo.

Update FedML Submodule

cd FedML
git checkout master && git pull
cd ..
git add FedML
git commit -m "#<issue_id> - updating submodule FedML to latest"
git push
Owner
FedML-AI
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML-AI
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022