Full ELT process on GCP environment.

Overview

Rent Houses Germany - GCP Pipeline

gcp_pipeline

Project:

  • The goal of the project is to extract data about house rentals in Germany, store, process and analyze it using GCP tools. The focus here is to practice and get used to the GCP environment.

Main Tools:

Python

Cloud Storage

BigQuery

Dataprep

Data Studio

Looker

Crontab

Bash

Data Extraction and Storage:

Source: https://www.immonet.de/

  • The data extraction is done in 3 steps where first the quantity of offers for each city is collected, them the ID's for each offers and finaly the raw information about each rent offer is extracted.

  • The first script is responsible to scrape the number of offers in each city and save the information as a CSV file in Cloud Storage. The second script gets the previous CSV file from Cloud Storage and uses it to scrape all ID's from each offers in each city and load the information back to Cloud Storage as a new CSV file. The third script gets the rent offer's ID info from Cloud Storage and perform a web-scraper to collect all information for each ID and save it back to Cloud Storage, again as a CSV file containing all raw infos about the offers.

  • All the extractions steps are scheduled though a Crontab Job to run everyday at 0h.

cronjob

Data Preprocessing.

  • As the last CSV file contains all the RAW information about each offer grouped in only two columns, a preprocessing step is needed. The preprocessor script gets the CSV file with the raw information from Cloud Storage, separates the data into the appropriate columns already performing some cleaning like excluding not needed characters. Again, the preprocessed CSV file is stored in Cloud Storage.

all_offers_infos_raw.csv:

raw_infos

all_offers_infos_pp.csv:

raw_infos

Data Cleaning and Preparation.

  • Here is used Cloud Dataprep to clean and prepare the data for further use. To transform the rent data into useble information first we need to clean and prepare it. Dataprep is a realy good tool where we can look inside the data and can perform all kind of filtering, removing and preparations. Dataprep gets the preprocessed csv file from Cloud Storage and runs a "recipe" tranforming the data to be analyzed. Dataprep saves the cleaned and final csv file both into Data Storage (a backup) and into a BigQuery warehouse.

dataprepJob

  • The Dataproc job was scheduled to run everyday 7 A.M and update the data source for the reports.

Data Analysis - Data Studio Report.

  • With the data cleaned and loaded into BigQuery it's time to display the information. The GCP tools used to display the data was Data Studio and Looker. First I used Data Studio to make a simple report summaring all the rent houses main informantion and schedule to send an e-mail with the updated report avery day at 8 A.M.

    data_studio_dashboard

German Rent Report - 27.11.21

Data Analysis - Looker Dashboard.

  • I'm still working on it.

Conclusion.

  • The tools available on Google Cloud Platform are simply amazing. As in all Cloud platforms, the tools are available and are arranged in a way to make the user's life easier, it is really cool and very practical to build an entire ETL/ELT process using the available tools and it makes everything much easier and agile. The fact that you don't have to deal with hardware fiscally, the automated scalability, the advanced security controls, the availability of virtually all the necessary tools in one place, the integration between the tools, and all the other characteristics of cloud environments contribute greatly to the considerable increase in productivity, in environments like these we only need to focus on doing the main part of our job, on delivering the result, and that is amazing. For me it has been a very pleasant experience to work and experience these features, the next steps now are to continue learning and applying them and in the future to seek certifications.
Owner
Felipe Demenech Vasconcelos
In a constant learning path...
Felipe Demenech Vasconcelos
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation

VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat

Julian Mack 23 Dec 16, 2022
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
Single machine, multiple cards training; mix-precision training; DALI data loader.

Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra

2 Jun 27, 2022
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
.npy, .npz, .mtx converter.

npy-converter Matrix Data Converter. Expand matrix for multi-thread, multi-process Divid matrix for multi-thread, multi-process Support: .mtx, .npy, .

taka 1 Feb 07, 2022