[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

Related tags

Deep LearningIICNet
Overview

IICNet - Invertible Image Conversion Net

Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). Demo Video | Supplements

Introduction

Reversible image conversion (RIC) aims to build a reversible transformation between specific visual content (e.g., short videos) and an embedding image, where the original content can be restored from the embedding when necessary. This work develops Invertible Image Conversion Net (IICNet) as a generic solution to various RIC tasks due to its strong capacity and task-independent design. Unlike previous encoder-decoder based methods, IICNet maintains a highly invertible structure based on invertible neural networks (INNs) to better preserve the information during conversion. We use a relation module and a channel squeeze layer to improve the INN nonlinearity to extract cross-image relations and the network flexibility, respectively. Experimental results demonstrate that IICNet outperforms the specifically-designed methods on existing RIC tasks and can generalize well to various newly-explored tasks. With our generic IICNet, we no longer need to hand-engineer task-specific embedding networks for rapidly occurring visual content.

Installation

Clone this repository and set up the environment.

git clone https://github.com/felixcheng97/IICNet.git
cd IICNet/
conda env create -f iic.yml

Dataset Preparation

We conduct experments on 5 multiple-and-single RIC tasks in the main paper and 2 single-and-single RIC tasks in the supplements. Note that all the datasets are placed under the ./datasets directory.

Task 1: Spatial-Temporal Video Embedding

We use the high-quality DAVIS 2017 video dataset in this task. You could download the Semi-supervised 480p dataset through this link. Unzip, rename, and place them under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |   |-- DAVIS-2017-test-challenge (rename the DAVIS folder from DAVIS-2017-test-challenge-480p.zip)
    |   |-- DAVIS-2017-test-dev       (rename the DAVIS folder from DAVIS-2017-test-dev-480p.zip)
    |   `-- DAVIS-2017-trainval       (rename the DAVIS folder from DAVIS-2017-trainval-480p.zip)
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python davis_annotation.py

Task 2: Mononizing Binocular Images

We use the Flickr1024 dataset with the official train and test splits in this task. You could download the dataset through this link. Place the dataset under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |   |-- Test
    |   |-- Train_1
    |   |-- Train_2
    |   |-- Train_3
    |   |-- Train_4
    |   `-- Validation
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python flicker1024_annotation.py

Task 3: Embedding Dual-View Images

We use the DIV2K dataset in this task. You could download the dataset through this link. Download the corresponding datasets and place them under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |   |-- DIV2K_train_HR
    |   |-- DIV2K_train_LR_bicubic
    |   |   |-- X2
    |   |   |-- X4
    |   |   |-- X8
    |   |-- DIV2K_valid_HR
    |   `-- DIV2K_valid_LR_bicubic
    |       |-- X2
    |       |-- X4
    |       `-- X8
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python div2kddual_annotation.py

Task 4: Embedding Multi-Layer Images / Composition and Decomposition

We use the Adobe Deep Matting dataset and the Real Matting dataset in this task. You could download the Adobe Deep Matting dataset according to their instructions through this link. You could download the Real Matting dataset on its official GitHub page or through this direct link. Place the downloaded datasets under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |   |-- Addobe_Deep_Matting_Dataset.zip
    |   |-- train2014.zip
    |   |-- VOC2008test.tar
    |   `-- VOCtrainval_14-Jul-2008.tar
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    |   |-- fixed-camera
    |   `-- hand-held
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts

# process the Adobe Matting dataset
python adobe_process.py
python adobe_annotation.py

# process the Real Matting dataset
python real_process.py
python real_annotation.py

Task 5: Hiding Images in an Image

We use the Flicker 2W dataset in this task. You could download the dataset on its official GitHub page through this link. Place the unzipped dataset under the datasets directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |   `-- flicker_2W_images
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python flicker_annotation.py

Task 6 (supp): Invertible Grayscale

We use the VOC2012 dataset in this task. You could download the training/validation dataset through this link. Place the unzipped dataset under the datasets directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit
        `-- VOC2012

Then run the following scripts for annotation

cd codes/scripts
python voc2012_annotation.py

Task 7 (supp): Invertible Image Rescaling

We use the DIV2K dataset in this task. Please check Task 3: Embedding Dual-View Images to download the corresponding dataset. Then run the following scripts for annotation.

cd codes/scripts
python div2ksr_annotation.py

Training

To train a model for a specific task, run the following script:

cd codes
OMP_NUM_THREADS=4 python train.py -opt ./conf/train/<xxx>.yml

To enable distributed training with multiple GPUs for a specific task, simply assign a list of gpu_ids in the yml file and run the following script. Note that since training with multiple GPU is not tested yet, we suggest to train a model with a single GPU.

cd codes
OMP_NUM_THREADS=4 python -m torch.distributed.launch --nproc_per_node=4 --master_port 29501 train.py -opt ./conf/train/<xxx>.yml

Testing

We provide our trained models in our paper for your reference. Download all the pretrained weights of our models from Google Drive or Baidu Drive (extraction code: e377). Unzip the zip file and place pretrained models under the ./experiments directory.

To test a model for a specific task, run the following script:

cd codes
OMP_NUM_THREADS=4 python test.py -opt ./conf/test/<xxx>.yml

Acknowledgement

Some codes of this repository benefits from Invertible Image Rescaling (IRN).

Citation

If you find this work useful, please cite our paper:

@inproceedings{cheng2021iicnet,
    title = {IICNet: A Generic Framework for Reversible Image Conversion}, 
    author = {Ka Leong Cheng and Yueqi Xie and Qifeng Chen},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    year = {2021}
}

Contact

Feel free to open an issue if you have any question. You could also directly contact us through email at [email protected] (Ka Leong Cheng) and [email protected] (Yueqi Xie).

Owner
felixcheng97
felixcheng97
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022