Deep Crop Rotation

Overview

Deep Crop Rotation

Paper (to come very soon!)

We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classification. Our approach, based on the PSE+LTAE model, provides a significant performance boost of +6.6 mIoU compared to single-year models. We release the first large-scale multi-year agricultural dataset with over 100 000 annotated parcels for 3 years: 2018, 2019, and 2020.

Sublime's custom image

Requirements

  • PyTorch + Torchnet
  • Numpy + Pandas + Scipy + scikit-learn
  • pickle
  • os
  • json
  • argparse

The code was developed in python 3.7.7 with pytorch 1.8.1 and cuda 11.3 on a debian, ubuntu 20.04.3 environment.

Downloads

Multi-year Sentinel-2 dataset

You can download our Multi-Year Sentinel-2 Dataset here.

Code

This repository contains the scripts to train a multi-year PSE-LTAE model with a spatially separated 5-fold cross-validation scheme. The implementations of the PSE-LTAE can be found in models.

Use the train.py script to train the 130k-parameter L-TAE based classifier with 2 years declarations and multi-year modeling (2018, 2019 and 2020). You will only need to specify the path to the dataset folder:

python3 train.py --dataset_folder path_to_multi_year_sentinel_2_dataset

If you want to use a specific number of year for temporal features add: --tempfeat number_of_year (eg. 3)

Choose the years used to train the model with: --year (eg. "['2018', '2019', '2020']")

Pre-trained models

Two pre-trained models are available in the models_saved repository:

  • Mdec: Multi-year Model with 2 years temporal features, trained on a mixed year training set.
  • Mmixed: singe-year model, trained on a mixed year training set.

Use our pre-trained model with: --test_mode true --loaded_model path_to_your_model --tempfeat number_of_years_used_to_train_the_model

Use your own data

If you want to train a model with your own data, you need to respect a specific architecture:

  • A main repository should contain two sub folders: DATA and META and a normalisation file.
  • META: contains the labels.json file containing the ground truth, dates.json containing each date of acquisition and geomfeat.json containing geometrical features (dates.json and geomfeat.json are optional).
  • DATA: contains a sub folder by year containing a .npy file by parcel.

Each parcel of the dataset must appear for each year with the same name in the DATA folder. You must specify the number of acquisitions in the year that has the most acquisitions with the option --lms length_of_the_sequence. You also need to add your own normalisation file in train.py

Credits

  • The original PSE-LTAE model adapted for our purpose can be found here
Owner
Félix Quinton
Félix Quinton
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023