Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

Overview

CoulombGas

Build Status

This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX, it utilizes (both forward- and backwark-mode) automatic differentiation and the pmap mechanism to achieve a large-scale single-program multiple-data (SPMD) training on multiple GPUs.

Requirements

  • JAX with Nvidia GPU support
  • A handful of GPUs. The more the better :P
  • haiku
  • optax
  • To analytically computing the thermal entropy of a non-interacting Fermi gas in the canonical ensemble based on arbitrary-precision arithmetic, we have used the python library mpmath.

Demo run

To start, try running the following commands to launch a training of 13 spin-polarized electrons in 2D with the dimensionless density parameter 10.0 and (reduced) temperature 0.15 on 8 GPUs:

export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python main.py --n 13 --dim 2 --rs 10.0 --Theta 0.15 --Emax 25 --sr --batch 4096 --num_devices 8 --acc_steps 2

Note that we effectively sample a batch of totally 8192 samples in each training step. However, such a batch size will result in too large a memory consumption to be accommodated by 8 GPUs. To overcome this problem, we choose to split the batch into two equal pieces, and accumulate the gradient and various observables for each piece in two sequential substeps. In other words, the argument batch in the command above actually stands for the batch per accumulation step.

If you have only, say, 4 GPUs, you can set batch, num_devices, acc_steps to be 2048, 4 and 4 respectively to launch the same training process, at the expense of doubling the running time. The GPU hours are nevertheless the same.

For the detail meaning of other command line arguments, run

python main.py --help

or directly refer to the source code.

Trained model and data

A training process from complete scratch actually contains two stages. In the first stage, a variational autoregressive network is pretrained to approximate the Boltzmann distribution of the corresponding non-interacting electron gas. The resulting model can be saved and then loaded later. In fact, we have provided such a model file for the parameter settings of the last section for your convenience, so you can quickly get a feeling of the second stage of training the truly interacting system of our interest. We encourage you to remove the file to pretrain the model by yourself; it is actually much faster than the training in the second stage.

To facilitate further developments, we also provide the training models and logged data for various calculations in the paper, which are located in the data directory.

To cite

arxiv

Owner
FermiFlow
ab-initio study of fermions at finite temperature
FermiFlow
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022