A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Overview

Semantic Meshes

A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Build License: MIT

Paper

If you find this framework useful in your research, please consider citing: [arxiv]

@misc{fervers2021improving,
      title={Improving Semantic Image Segmentation via Label Fusion in Semantically Textured Meshes},
      author={Florian Fervers, Timo Breuer, Gregor Stachowiak, Sebastian Bullinger, Christoph Bodensteiner, Michael Arens},
      year={2021},
      eprint={2111.11103},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Workflow

  1. Reconstruct a mesh of your scene from a set of images (e.g. using Colmap).
  2. Send all undistorted images through your segmentation model (e.g. from tfcv or image-segmentation-keras) to produce 2D semantic annotation images.
  3. Project all 2D annotations into the 3D mesh and fuse conflicting predictions.
  4. Render the annotated mesh from original camera poses to produce new 2D consistent annotation images, or save it as a colorized ply file.

Example output for a traffic scene with annotations produced by a model that was trained on Cityscapes:

view1 view2

Usage

We provide a python interface that enables easy integration with numpy and machine learning frameworks like Tensorflow. A full example script is provided in colorize_cityscapes_mesh.py that annotates a mesh using a segmentation model that was pretrained on Cityscapes. The model is downloaded automatically and the prediction peformed on-the-fly.

import semantic_meshes

...

# Load a mesh from ply file
mesh = semantic_meshes.data.Ply(args.input_ply)
# Instantiate a triangle renderer for the mesh
renderer = semantic_meshes.render.triangles(mesh)
# Load colmap workspace for camera poses
colmap_workspace = semantic_meshes.data.Colmap(args.colmap)
# Instantiate an aggregator for aggregating the 2D input annotations per 3D primitive
aggregator = semantic_meshes.fusion.MeshAggregator(primitives=renderer.getPrimitivesNum(), classes=19)

...

# Process all input images
for image_file in image_files:
    # Load image from file
    image = imageio.imread(image_file)
    ...
    # Predict class probability distributions for all pixels in the input image
    prediction = predictor(image)
    ...
    # Render the mesh from the pose of the given image
    # This returns an image that contains the index of the projected mesh primitive per pixel
    primitive_indices, _ = renderer.render(colmap_workspace.getCamera(image_file))
    ...
    # Aggregate the class probability distributions of all pixels per primitive
    aggregator.add(primitive_indices, prediction)

# After all images have been processed, the mesh contains a consistent semantic representation of the environment
aggregator.get() # Returns an array that contains the class probability distribution for each primitive

...

# Save colorized mesh to ply
mesh.save(args.output_ply, primitive_colors)

Docker

If you want to skip installation and jump right in, we provide a docker file that can be used without any further steps. Otherwise, see Installation.

  1. Install docker and gpu support
  2. Build the docker image: docker build -t semantic-meshes https://github.com/fferflo/semantic-meshes.git#master
    • If your system is using a proxy, add: --build-arg HTTP_PROXY=... --build-arg HTTPS_PROXY=...
  3. Open a command prompt in the docker image and mount a folder from your host system (HOST_PATH) that contains your colmap workspace into the docker image (DOCKER_PATH): docker run -v /HOST_PATH:/DOCKER_PATH --gpus all -it semantic-meshes bash
  4. Run the provided example script inside the docker image to annotate the mesh with Cityscapes annotations: colorize_cityscapes_mesh.py --colmap /DOCKER_PATH/colmap/dense/sparse --input_ply /DOCKER_PATH/colmap/dense/meshed-delaunay.ply --images /DOCKER_PATH/colmap/dense/images --output_ply /DOCKER_PATH/colorized_mesh.ply

Running the repository inside a docker image is significantly slower than running it in the host system (12sec/image vs 2sec/image on RTX 6000).

Installation

Dependencies

  • CUDA: https://developer.nvidia.com/cuda-downloads
  • OpenMP: On Ubuntu: sudo apt install libomp-dev
  • Python 3
  • Boost: Requires the python and numpy components of the Boost library, which have to be compiled for the python version that you are using. If you're lucky, your OS ships compatible Boost and Python3 versions. Otherwise, compile boost from source and make sure to include the --with-python=python3 switch.

Build

The repository contains CMake code that builds the project and provides a python package in the build folder that can be installed using pip.

CMake downloads, builds and installs all other dependencies automatically. If you don't want to clutter your global system directories, add -DCMAKE_INSTALL_PREFIX=... to install to a local directory.

The framework has to be compiled for specific number of classes (e.g. 19 for Cityscapes, or 2 for a binary segmentation). Add a semicolon-separated list with -DCLASSES_NUMS=2;19;... for all number of classes that you want to use. A longer list will significantly increase the compilation time.

An example build:

git clone https://github.com/fferflo/semantic-meshes
cd semantic-meshes
mkdir build
mkdir install
cd build
cmake -DCMAKE_INSTALL_PREFIX=../install -DCLASSES_NUMS=19 ..
make -j8
make install # Installs to the local install directory
pip install ./python

Build with incompatible Boost or Python versions

Alternatively, in case your OS versions of Boost or Python do not match the version requirements of semantic-meshes, we provide an installation script that also fetches and locally installs compatible versions of these dependencies: install.sh. Since the script builds python from source, make sure to first install all optional Python dependencies that you require (see e.g. https://github.com/python/cpython/blob/main/.github/workflows/posix-deps-apt.sh).

Owner
Florian
Florian
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022