Python framework for Stochastic Differential Equations modeling

Related tags

Deep Learningsdelearn
Overview

SDElearn: a Python package for SDE modeling

This package implements functionalities for working with Stochastic Differential Equations models (SDEs for short). It includes simulation routines as well as estimation methods based on observed time series.

Installation

The sdelearn package is available on the TestPyPi repository and can be installed by running

pip install -i https://test.pypi.org/simple/ sdelearn

How to create a sdelearn class?

The sdelearn class is the main class containing the information about a SDE. Conceptually the information required to describe SDEs can be divided in three groups: model, sampling and data. A sdelearn class is thus based on three dedicated subclasses, SdeModel, SdeSampling and SdeData, containing information about the model, the sampling structure and the observed data respectively. First these three classes must be created:

  • SdeModel: contains information about the Sde model, in particular the "actual" Sde formula. It is assumed to be a parametric model, i.e. the functional form of the model is known up to some parameters. In order to construct this class user is required to supply two functions, a drift function (drift) and a diffusion function (diff); an array-like object mod_shape containing the dimensions of the model of the form [n_var, n_noise], where the first dimension represents the number of variables and the second the number of Gaussian noises; a dictionary par_names with keys "drift" and "diffusion" and with values given by character lists containing all the parameter names appearing in the corresponding drift and diffusion function, e.g. par_names = {"drift": ["par_dr1, "par_dr2"...], "diffusion: ["par_di1, "par_dr2"...] "(this argument is optional and parameter names can be set later using the function set_param); a character list var_names containing variable names, if missing automatically set to x0, x1 ... x[n_var].

    The mode argument controls the way the model is specified. There are two ways to supply the drift and diffusion components of the model: "symbolic" or "functional" mode.

    Symbolic mode. In symbolic mode (mode = 'sym', the default) the drift and diffusion are supplied as lists of sympy expressions, where all the non-constant values, i.e. parameters and state variables, are expressed as sympy symbols. All the mathematical functions used in the expressions have to be imported from sympy, e.g. use sympy.sqrt instead of math.sqrt. The length of the drift list has to match number of variables in the model n_var. Similarly the diff argument has to be a matrix-like object or nested list with length n_var and the length of diff[0] is n_noise. In this case the dimensions of the model and the parameters are inferred from the expressions and it is not necessary to specify the par_names and mod_shape arguments. The variable names are required or assumed to be x0, x1 ... x[n_var].

    Function mode. This is be specified by mode='fun'. The drift function must be a vector valued function, taking as input two arguments: the state value and the parameters. The input state should be a numeric vector or list, the parameters should be a dictionary. The value returned by this function must match the number of variables n_var in the model. Similarly, the diffusion function of the model must be supplied as a matrix valued function, which takes as input the current state and a dictionary containing the parameters. The dimensions of the output value of the diffusion function must match the number of variables and noises supplied: i.e. it must be a n_varxn_noise matrix. Drift and diffusion functions can be scalar valued. The parameters must be addressed by name in both these functions, i.e. as keys in a dictionary. Note that names are important here: names used in the drift and diffusion function definitions must be consistent with those supplied as initial values for estimation or simulation (simulate). See the examples for details. As a rule of thumb the models should be supplied as you'd write them with "pen and paper".

  • SdeSampling: it contains information about the temporal sampling of the data. It is constructed by supplying the time of the initial observation initial (typically initial=0), the last observed time terminal and the one between delta, the time span between each pair of observations (assumed constant), or n the number of points in the grid (including endpoints). If delta is given the terminal value might not be matched exactly and will be replaced by the largest value in the grid <= terminal. A time grid corresponding to the observation time is automatically generated;

  • SdeData: it contains empirically observed or simulated data. It should be a data frame where each row corresponds to an observation of the time series. The observation times should match the time grid supplied in the sampling information: that is the number of rows in SdeData.data should be equal to the length of the grid Sdesampling.grid.

Finally, an instance of sdelearn can be created as Sde(model = SdeModel, sampling=SdeSampling, data=SdeData) where the value of each of the three arguments is an instance of the previous classes. The data argument is optional. Data can be added later e.g. by simulation or by using the setData method.

Learning model parameters using a SdeLearner

The parameters of a SDE can be estimated using an object of class SdeLearner. Currently available learners are Qmle and AdaLasso. For evert learner the following functions are available

  • loss: computes the loss function associated with the learner (see specific implementations for details)
  • fit: learns the model parameters by minimizing the loss function
  • predict: estimates the trend of the series on a given set of times
  • gradient, hessian: compute the exact gradient and hessian of the loss function. Available only in symbolic mode, not implemented for LSA based methods.

A learner object is built around a Sde. Some learners (e.g. AdaLasso) require information about an initial estimate. This is provided by supplying a fitted learner as base_estimator when the object is created. Details on the parameters depend on the specific implementation of each learner.

Technical details

This section contains some information about the internal structure of the package (if you are getting unexpected errors this is a good place to start).

  • param: when in mode='fun', typical name for parameter argument of drift and diffusion function. Both functions share the same parameter dictionary, and the full parameter dictionary will be passed to both functions. Parameter names used inside the function will make the difference. Initially, if the par_names argument is left blank, the model is not aware of what the parameters of the models are. They will be inferred when simulation takes place without distinction between drift and diffusion parameters. When the simulate method or an estimation method is called the user will have to supply a truep parameter or a starting parameter for the optimization which will act as a template for the parameter space of the model. Before any estimation takes place the parameter names should be explicitly set.

  • the SdeLearner class is generic ("abstract") and the user should never directly use it but instead they should use one of the subclasses implementing specific methods.

  • in numerical computation the dictionary of parameters is converted to arrays. This arrays must match the order of the parameters in the model. which is drift first then diffusion, in lexicographic order. Fit and loss functions should automatically match the supplied values with the order specified in the model: currently automatic reordering is done for arguments param of the loss function, start and bounds in model fitting. Note that bounds do not have names, so they are assumed to have the same order as start. The ordered list of parameters can be accessed by Sde.model.param.

Examples

A multivariate model.

Functional mode. This is the direct way to approach Sde modeling with sdelearn. Import the sdelearn libray

from sdelearn import *

Define the drift function:

def b(x, param):
    out = [0,0]
    out[0]= param["theta_dr00"] - param["theta_dr01"] * x[0]
    out[1] = param["theta_dr10"] - param["theta_dr11"] * x[1]
    return out

Define the diffusion function:

def A(x, param):
    out = [[0,0],[0,0]]
    out[0][0] = param["theta_di00"] + param["theta_di01"] * x[0]
    out[1][1] = param["theta_di10"] + param["theta_di11"] * x[1]
    out[1][0] = 0
    out[0][1] = 0
    return out

Create the Sde object, specifying the parameters used in the drift and diffusion functions

par_names = {"drift": ["theta_dr00", "theta_dr01", "theta_dr10", "theta_dr11"],
             "diffusion": ["theta_di00", "theta_di01", "theta_di10", "theta_di11"]}

sde = Sde(sampling=SdeSampling(initial=0, terminal=2, delta=0.01),
          model=SdeModel(b, A, mod_shape=[2, 2], par_names=par_names, mode='fun'))

print(sde)

Set the true value of the parameter and simulate a sample path of the process:

truep = {"theta.dr00": 0, "theta.dr01": -0.5, "theta.dr10": 0, "theta.dr11": -0.5, "theta.di00": 0, "theta.di01": 1, "theta.di10": 0, "theta.di11": 1}
sde.simulate(truep=truep, x0=[1, 2])

Plot the simulated path:

sde.plot()

Fit the model using a quasi-maximum-likelihood estimator:

qmle = Qmle(sde)
startp = dict(zip([p for k in par_names.keys() for p in par_names.get(k)],
                  np.round(np.abs(np.random.randn(len(par_names))), 1)))
qmle.fit(startp, method='BFGS')

See the results: estimated parameter, its variance covariance matrix and information about the optimization process

qmle.est
qmle.vcov
qmle.optim_info

Compute and show predictions (estimated trend)

qmle.predict().plot()

Symbolic mode.

from sdelearner import *
import numpy as np
import sympy as sym

Create symbols and define the drift vector and diffusion matrix.

n_var = 2
theta_dr = [sym.symbols('theta_dr{0}{1}'.format(i, j)) for i in range(n_var) for j in range(2)]
theta_di = [sym.symbols('theta_di{0}{1}'.format(i, j)) for i in range(n_var) for j in range(2)]

all_param = theta_dr + theta_di
state_var = [sym.symbols('x{0}'.format(i)) for i in range(n_var)]

b_expr = np.array([theta_dr[2*i] - theta_dr[2*i+1] * state_var[i] for i in range(n_var)])

A_expr = np.full((n_var,n_var), sym.sympify('0'))
np.fill_diagonal(A_expr, [theta_di[2*i] + theta_di[2*i+1] * state_var[i] for i in range(n_var)])

Instanciate the Sde. Note that in this case it is not necessary to specify par_names while mode='sym is the default.

sde = Sde(sampling=SdeSampling(initial=0, terminal=20, delta=0.01),
          model=SdeModel(b_expr, A_expr, state_var=[s.name for s in state_var]))
print(sde)

Fix some paramter value and simulate:

truep = dict(zip([s.name for s in all_param], np.round(np.abs(np.random.randn(len(all_param))), 1)))
sde.simulate(truep=truep, x0=np.arange(n_var))

sde.plot()

Fit the data using qmle, specifying box-constraints for the optimization

qmle = Qmle(sde)
startp = dict(zip([s.name for s in all_param], np.round(np.abs(np.random.randn(len(all_param))), 1)))
box_width = 10
bounds = [(-0.5*box_width, 0.5*box_width)]*len(all_param) + np.random.rand(len(all_param)*2).reshape(len(all_param), 2)


qmle.fit(start=startp, method='L-BFGS-B', bounds = bounds)
qmle.est
qmle.optim_info

Fit the parameters using adaptive lasso and qmle as initial estimator. Set a delta > 0 value to use adaptive weights, additionally use the weights argument to apply a specific penalty to each parameter.

lasso = AdaLasso(sde, qmle, delta=1, start=startp)
lasso.lambda_max
lasso.penalty
lasso.fit()

By default no lambda value is chosen and the full path of estimates is computed:

lasso.est_path
lasso.plot()

In order to choose a penalization value fit using last 10% obs as validation set (optimal lambda minimizes validation loss):

lasso.fit(cv=0.1)

In this case the estimate corresponding to optimal lambda is computed:

lasso.est
lasso.vcov
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021