A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Overview

Movenet.Pytorch

license

Intro

start

MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Google just release pre-train models(tfjs or tflite), which cannot be converted to some CPU inference framework such as NCNN,Tengine,MNN,TNN, and we can not add our own custom data to finetune, so there is this repo.

How To Run

1.Download COCO dataset2017 from https://cocodataset.org/. (You need train2017.zip, val2017.zip and annotations.)Unzip to movenet.pytorch/data/ like this:

├── data
    ├── annotations (person_keypoints_train2017.json, person_keypoints_val2017.json, ...)
    ├── train2017   (xx.jpg, xx.jpg,...)
    └── val2017     (xx.jpg, xx.jpg,...)

2.Make data to our data format.

python scripts/make_coco_data_17keypooints.py
Our data format: JSON file
Keypoints order:['nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 
    'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 
    'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 
    'right_ankle']

One item:
[{"img_name": "0.jpg",
  "keypoints": [x0,y0,z0,x1,y1,z1,...],
  #z: 0 for no label, 1 for labeled but invisible, 2 for labeled and visible
  "center": [x,y],
  "bbox":[x0,y0,x1,y1],
  "other_centers": [[x0,y0],[x1,y1],...],
  "other_keypoints": [[[x0,y0],[x1,y1],...],[[x0,y0],[x1,y1],...],...], #lenth = num_keypoints
 },
 ...
]

3.You can add your own data to the same format.

4.After putting data at right place, you can start training

python train.py

5.After training finished, you need to change the test model path to test. Such as this in predict.py

run_task.modelLoad("output/xxx.pth")

6.run predict to show predict result, or run evaluate.py to compute my acc on test dataset.

python predict.py

7.Convert to onnx.

python pth2onnx.py

Training Results

Some good samples

good

Some bad cases

bad

Tips to improve

1. Focus on data

  • Add COCO2014. (But as I know it has some duplicate data of COCO2017, and I don't know if google use it.)
  • Clean the croped COCO2017 data. (Some img just have little points, such as big face, big body,etc.MoveNet is a small network, COCO data is a little hard for it.)
  • Add some yoga, fitness, and dance videos frame from YouTube. (Highly Recommened! Cause Google did this on their Movenet and said 'Evaluations on the Active validation dataset show a significant performance boost relative to identical architectures trained using only COCO. ')

2. Change backbone

Try to ransfer Mobilenetv2(original Movenet) to Mobilenetv3 or Shufflenetv2 may get a litte improvement.If you just wanna reproduce the original Movenet, u can ignore this.

3. More fancy loss

Surely this is a muti-task learning. So add some loss to learn together may improve the performence. (Such as BoneLoss which I have added.) And we can never know how Google trained, cause we cannot see it from the pre-train tflite model file, so you can try any loss function you like.

4. Data Again

I just wanna you know the importance of the data. The more time you spend on clean data and add new data, the better performance your model will get! (While tips 2 and 3 may not.)

Resource

  1. Blog:Next-Generation Pose Detection with MoveNet and TensorFlow.js
  2. model card
  3. TFHub:movenet/singlepose/lightning
  4. My article share: 2021轻量级人体姿态估计模型修炼之路(附谷歌MoveNet复现经验)
Owner
Mr.Fire
Mr.Fire
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022