[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

Overview

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts.

by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC Berkeley/ICSI and NTU

International Conference on Learning Representations (ICLR), 2021. Spotlight Presentation

Project Page | PDF | Preprint | OpenReview | Slides | Citation

This repository contains an official re-implementation of RIDE from the authors, while also has plans to support other works on long-tailed recognition. Further information please contact Xudong Wang and Long Lian.

Citation

If you find our work inspiring or use our codebase in your research, please consider giving a star and a citation.

@inproceedings{wang2021longtailed,
  title={Long-tailed Recognition by Routing Diverse Distribution-Aware Experts},
  author={Xudong Wang and Long Lian and Zhongqi Miao and Ziwei Liu and Stella Yu},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=D9I3drBz4UC}
}

Supported Methods for Long-tailed Recognition:

  • RIDE
  • Cross-Entropy (CE) Loss
  • Focal Loss
  • LDAM Loss
  • Decouple: cRT (limited support for now)
  • Decouple: tau-normalization (limited support for now)

Updates

[04/2021] Pre-trained models are avaliable in model zoo.

[12/2020] We added an approximate GFLops counter. See usages below. We also refactored the code and fixed a few errors.

[12/2020] We have limited support on cRT and tau-norm in load_stage1 option and t-normalization.py, please look at the code comments for instructions while we are still working on it.

[12/2020] Initial Commit. We re-implemented RIDE in this repo. LDAM/Focal/Cross-Entropy loss is also re-implemented (instruction below).

Table of contents

Requirements

Packages

  • Python >= 3.7, < 3.9
  • PyTorch >= 1.6
  • tqdm (Used in test.py)
  • tensorboard >= 1.14 (for visualization)
  • pandas
  • numpy

Hardware requirements

8 GPUs with >= 11G GPU RAM are recommended. Otherwise the model with more experts may not fit in, especially on datasets with more classes (the FC layers will be large). We do not support CPU training, but CPU inference could be supported by slight modification.

Dataset Preparation

CIFAR code will download data automatically with the dataloader. We use data the same way as classifier-balancing. For ImageNet-LT and iNaturalist, please prepare data in the data directory. ImageNet-LT can be found at this link. iNaturalist data should be the 2018 version from this repo (Note that it requires you to pay to download now). The annotation can be found at here. Please put them in the same location as below:

data
├── cifar-100-python
│   ├── file.txt~
│   ├── meta
│   ├── test
│   └── train
├── cifar-100-python.tar.gz
├── ImageNet_LT
│   ├── ImageNet_LT_open.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_val.txt
│   ├── test
│   ├── train
│   └── val
└── iNaturalist18
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_val.txt
    └── train_val2018

How to get pretrained checkpoints

We have a model zoo available.

Training and Evaluation Instructions

Imbalanced CIFAR 100/CIFAR100-LT

RIDE Without Distill (Stage 1)
python train.py -c "configs/config_imbalance_cifar100_ride.json" --reduce_dimension 1 --num_experts 3

Note: --reduce_dimension 1 means set reduce dimension to True. The template has an issue with bool arguments so int argument is used here. However, any non-zero value will be equivalent to bool True.

RIDE With Distill (Stage 1)
python train.py -c "configs/config_imbalance_cifar100_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint

Distillation is not required but could be performed if you'd like further improvements.

RIDE Expert Assignment Module Training (Stage 2)
python train.py -c "configs/config_imbalance_cifar100_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3

Note: different runs will result in different EA modules with different trade-off. Some modules give higher accuracy but require higher FLOps. Although the only difference is not underlying ability to classify but the "easiness to satisfy and stop". You can tune the pos_weight if you think the EA module consumes too much compute power or is using too few expert.

ImageNet-LT

RIDE Without Distill (Stage 1)

ResNet 10
python train.py -c "configs/config_imagenet_lt_resnet10_ride.json" --reduce_dimension 1 --num_experts 3
ResNet 50
python train.py -c "configs/config_imagenet_lt_resnet50_ride.json" --reduce_dimension 1 --num_experts 3
ResNeXt 50
python train.py -c "configs/config_imagenet_lt_resnext50_ride.json" --reduce_dimension 1 --num_experts 3

RIDE With Distill (Stage 1)

ResNet 10
python train.py -c "configs/config_imagenet_lt_resnet10_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint
ResNet 50
python train.py -c "configs/config_imagenet_lt_resnet50_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint
ResNeXt 50
python train.py -c "configs/config_imagenet_lt_resnext50_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint

RIDE Expert Assignment Module Training (Stage 2)

ResNet 10
python train.py -c "configs/config_imagenet_lt_resnet10_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3
ResNet 50
python train.py -c "configs/config_imagenet_lt_resnet50_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3
ResNeXt 50
python train.py -c "configs/config_imagenet_lt_resnext50_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3

iNaturalist

RIDE Without Distill (Stage 1)

python train.py -c "configs/config_iNaturalist_resnet50_ride.json" --reduce_dimension 1 --num_experts 3

RIDE With Distill (Stage 1)

python train.py -c "configs/config_iNaturalist_resnet50_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint

RIDE Expert Assignment Module Training (Stage 2)

python train.py -c "configs/config_iNaturalist_resnet50_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3

Using Other Methods with RIDE

  • Focal Loss: switch the loss to Focal Loss
  • Cross Entropy: switch the loss to Cross Entropy Loss

Test

To test a checkpoint, please put it with the corresponding config file.

python test.py -r path_to_checkpoint

Please see the pytorch template that we use for additional more general usages of this project (e.g. loading from a checkpoint, etc.).

GFLops calculation

We provide an experimental support for approximate GFLops calculation. Please open an issue if you encounter any problem or meet inconsistency in GFLops.

You need to install thop package first. Then, according to your model, run python -m utils.gflops (args) in the project directory.

Examples and explanations

Use python -m utils.gflops to see the documents as well as explanations for this calculator.

ImageNet-LT
python -m utils.gflops ResNeXt50Model 0 --num_experts 3 --reduce_dim True --use_norm False

To change model, switch ResNeXt50Model to the ones used in your config. use_norm comes with LDAM-based methods (including RIDE). reduce_dim is used in default RIDE models. The 0 in the command line indicates the dataset.

All supported datasets:

  • 0: ImageNet-LT
  • 1: iNaturalist
  • 2: Imbalance CIFAR 100
iNaturalist
python -m utils.gflops ResNet50Model 1 --num_experts 3 --reduce_dim True --use_norm True
Imbalance CIFAR 100
python -m utils.gflops ResNet32Model 2 --num_experts 3 --reduce_dim True --use_norm True
Special circumstances: calculate the approximate GFLops in models with expert assignment module

We provide a ea_percentage for specifying the percentage of data that pass each expert. Note that you need to switch to the EA model as well since you actually use EA model instead of the original model in training and inference.

An example:

python -m utils.gflops ResNet32EAModel 2 --num_experts 3 --reduce_dim True --use_norm True --ea_percentage 40.99,9.47,49.54

FAQ

See FAQ.

How to get support from us?

If you have any general questions, feel free to email us at longlian at berkeley.edu and xdwang at eecs.berkeley.edu. If you have code or implementation-related questions, please feel free to send emails to us or open an issue in this codebase (We recommend that you open an issue in this codebase, because your questions may help others).

Pytorch template

This is a project based on this pytorch template. The readme of the template explains its functionality, although we try to list most frequently used ones in this readme.

License

This project is licensed under the MIT License. See LICENSE for more details. The parts described below follow their original license.

Acknowledgements

This is a project based on this pytorch template. The pytorch template is inspired by the project Tensorflow-Project-Template by Mahmoud Gemy

The ResNet and ResNeXt in fb_resnets are based on from Classifier-Balancing/Decouple. The ResNet in ldam_drw_resnets/LDAM loss/CIFAR-LT are based on LDAM-DRW. KD implementation takes references from CRD/RepDistiller.

Owner
Xudong (Frank) Wang
Ph.D. Student @ EECS, UC Berkeley; Graduate Student Researcher @ International Computer Science Institute, Berkeley, USA
Xudong (Frank) Wang
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP

Pretrain and Fine-tune a T5 model with Flax on GCP This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM ava

Gabriele Sarti 41 Nov 18, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
NLP applications using deep learning.

NLP-Natural-Language-Processing NLP applications using deep learning like text generation etc. 1- Poetry Generation: Using a collection of Irish Poem

KASHISH 1 Jan 27, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
Clone a voice in 5 seconds to generate arbitrary speech in real-time

This repository is forked from Real-Time-Voice-Cloning which only support English. English | 中文 Features 🌍 Chinese supported mandarin and tested with

Weijia Chen 25.6k Jan 06, 2023
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021